Modeling near‐field GPR in three dimensions using the FDTD method

Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1114-1126 ◽  
Author(s):  
Roger L. Roberts ◽  
Jeffrey J. Daniels

Complexities associated with the theoretical solution of the near‐field interaction between the fields radiated from dipole antennas placed near a dielectric half‐space and electrical inhomogeneities within the dielectric can be overcome by using numerical techniques. The finite‐difference time‐domain (FDTD) technique implements finite‐difference approximations of Maxwell's equations in a discretized volume that permit accurate computation of the radiated field from a transmitting antenna, propagation through the air‐earth interface, scattering by subsurface targets and reception of the scattered fields by a receiving antenna. In this paper, we demonstrate the implementation of the FDTD technique for accurately modeling near‐field time‐domain ground‐penetrating radar (GPR). This is accomplished by incorporating many of the important GPR parameters directly into the FDTD model. These variables include: the shape of the GPR antenna, feed cables with a fixed characteristic impedance attached to the terminals of the antenna, the height of the antenna above the ground, the electrical properties of the ground, and the electrical properties and geometry of targets buried in the subsurface. FDTD data generated from a 3-D model are compared to experimental antenna impedance data, field pattern data, and measurements of scattering from buried pipes to verify the accuracy of the method.

Author(s):  
Ikuo Saitoh ◽  
Makoto Naruse

We proposed a new method, implicit symplectic finite difference time domain (FDTD) method) which inherits the good properties from the conventional FDTD method, simplecticity and the conservation of energy. The proposed method is free from the Courant-Friedrics-Lewy condition at the same time. In this paper, we show our method is more efficient than the conventional FDTD method using a typical problem, a polarization control in optical near and far fields of the designing the shape of a metal nanostructure.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2733
Author(s):  
Minhyuk Kim ◽  
SangWook Park

In this paper, a modified finite-difference time-domain (FDTD) method is proposed for the rapid analysis of a Hertzian dipole source in the low-frequency band. The FDTD technique is one of the most widely used methods for interpreting high-resolution problems such as those associated with the human body. However, this method has been difficult to use in the low-frequency band as the required number of iterations has increased significantly in such cases. To avoid this problem, FDTD techniques using quasi-static assumptions in low-frequency bands were used. However, this method was applied only to plane wave excitation, making it difficult to apply to near-field problems. Therefore, a modified approach is proposed, involving the application of the FDTD technique with a quasi-static approximation to an electric and magnetic dipole problem. The results when using the proposed method are in good agreement with those from a theoretical solution. An example of comparison with the standard FDTD method is shown for illustrating the proposed method’s performance.


2014 ◽  
Vol 602-605 ◽  
pp. 3359-3362
Author(s):  
Chun Li Zhu ◽  
Jing Li

In this paper, output near fields of nanowires with different optical and structure configurations are calculated by using the three-dimensional finite-difference time-domain (3D FDTD) method. Then a nanowire with suitable near field distribution is chosen as the probe for scanning dielectric and metal nanogratings. Scanning results show that the resolution in near-field imaging of dielectric nanogratings can be as low as 80nm, and the imaging results are greatly influenced by the polarization direction of the incident light. Compared with dielectric nanogratings, metal nanogratings have significantly enhanced resolutions when the arrangement of gratings is perpendicular to the polarization direction of the incident light due to the enhancement effect of the localized surface plasmons (SPs). Results presented here could offer valuable references for practical applications in near-field imaging with nanowires as optical probes.


Author(s):  
Zhongming Bai ◽  
Xikui Ma ◽  
Xu Zhuansun ◽  
Qi Liu

Purpose – The purpose of the paper is to introduce a perfectly matched layer (PML) absorber, based on Berenger's split field PML, to the recently proposed low-dispersion precise integration time domain method using a fourth-order accurate finite difference scheme (PITD(4)). Design/methodology/approach – The validity and effectiveness of the PITD(4) method with the inclusion of the PML is investigated through a two-dimensional (2-D) point source radiating example. Findings – Numerical results indicate that the larger time steps remain unchanged in the procedure of the PITD(4) method with the PML, and meanwhile, the PITD(4) method employing the PML is of the same absorbability as that of the finite-difference time-domain (FDTD) method with the PML. In addition, it is also demonstrated that the later time reflection error of the PITD(4) method employing the PML is much lower than that of the FDTD method with the PML. Originality/value – An efficient application of PML in fourth-order precise integration time domain method for the numerical solution of Maxwell's equations.


Sign in / Sign up

Export Citation Format

Share Document