transmitting antenna
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 73)

H-INDEX

15
(FIVE YEARS 3)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Jiahao Zhang ◽  
Fangmin He ◽  
Wei Li ◽  
Yi Li ◽  
Qing Wang ◽  
...  

Increased demand for higher spectrum efficiency, especially in the space-limited chip, base station, and vehicle environments, has spawned the development of full-duplex communications, which enable the transmitting and receiving to occur simultaneously at the same frequency. The key challenge in this full-duplex communication paradigm is to reduce the self-interference as much as possible, ideally, down to the noise floor. This paper provides a comprehensive review of the self-interference cancellation (SIC) techniques for co-located communication systems from a circuits and fields perspective. The self-interference occurs when the transmitting antenna and the receiving antenna are co-located, which significantly degrade the system performance of the receiver, in terms of the receiver desensitization, signal masking, or even damage of hardwares. By introducing the SIC techniques, the self-interference can be suppressed and the weak desired signal from the remote transmitter can be recovered. This, therefore, enables the full-duplex communications to come into the picture. The SIC techniques are classified into two main categories: the traditional circuit-domain SICs and the novel field-domain SICs, according to the method of how to rebuild and subtract the self-interference signal. In this review paper, the field-domain SIC method is systematically summarized for the first time, including the theoretical analysis and the application remarks. Some typical SIC approaches are presented and the future works are outlooked.


2022 ◽  
Vol 12 (1) ◽  
pp. 528
Author(s):  
Jinjing Ren ◽  
Hezhihan Fan ◽  
Qi Tang ◽  
Zhongyuan Yu ◽  
Yang Xiao ◽  
...  

Enlarging or reducing the antenna beam width of antennas can improve the positioning capability of detection systems. A miniaturized and easily fabricated ultra-wideband (UWB) antenna system for long-distance electromagnetic detection is proposed in this article. Two ultra-wideband Vivaldi antennae were designed. One was the transmitting antenna with a beam width of 90° or above, the other was a narrow beam antenna array with beam width less than 10°, as a receiving antenna. Both proposed antennae feature broadside gain diagrams with stable radiation patterns and wideband impedance matching in the frequency range between 2.5 GHz and 4 GHz. After detecting their frequency and time-domain behaviors, the detection system can achieve measurements covering a radius of 30 m.


2021 ◽  
Vol 11 (6) ◽  
pp. 7950-7956
Author(s):  
A. Alogla ◽  
M. A. H. Eleiwa ◽  
H. Alshortan

This study attempts to identify, design, and evaluate transmitting antennas for Solar Power Satellite (SPS) systems. The design approach aimed at meeting the SPS operational requirements at ISM bands, namely 2.4-2.5GHz for the NASA and 5.725-5.875GHz for the JAXA models. The primary attributes of SPS antennas for transmitting Beamed High-Power Microwaves (BHPMs) are high power handling capability, efficiency, and directivity with narrow beamwidth and lower sidelobe levels. Using a planar end-fed 20×20 SWA module, the whole planar Slotted Waveguide Antenna Arrays (SWAAs) were designed for both the NASA and JAXA reference models having 1km diameter antenna aperture, peak power level over 1GW, directivity over 80dBi, Side Lobe Level (SLL) less than 20dB, and pencil beam with HPBW less than 0.01°. The proposed slotted waveguide transmitting antenna arrays fulfilled the operational requirements for both the NASA and JAXA SPS reference models. Due to the higher operating frequency, the results showed that the proposed planar SWA array performs better on the JAXA than on the NASA SPS model.


Author(s):  
Дмитро Вячеславович Грецьких ◽  
Василь Олександрович Алєксєєв ◽  
Андрій Володимирович Гомозов ◽  
Віктор Олександрович Катрич ◽  
Михайло Васильович Нестеренко

The paper presents a mathematical model of radio-electronic systems (RES), which include antennas and their excitation paths with nonlinear characteristics. The model provides acceptable accuracy of RES quality indicator analysis and electromagnetic compatibility (EMC) for further practical design. General purpose: the development of a mathematical model of a transmitting multi-input radiating structure with nonlinear characteristics under the Fresnel zone. Objective: choice justification of a structural schema of a radiating multi-input system with a radiator that has a distributed nonlinear surface impedance; obtaining the nonlinear integral equations (NIE) related to the current density for radiators with distributed nonlinearity, excited by an arbitrary field distribution for solving the general analysis problem; obtaining a ratio for calculating focused electromagnetic fields (EMF) created by multi-input radiating structures with nonlinear characteristics in the Fresnel zone. The methods used in the paper are mathematical methods of electrodynamics and antennas theory with nonlinear elements (ANE), theory of microwave circuits, and multipoles. The following results were obtained. An electrodynamics approach is proposed to analyze the entire set of nonlinear effects arising in transmitting multi-input radiating structures with nonlinear characteristics. It allows considering the mutual influence of the transmitting and receiving antennas with nonlinear characteristics in the system itself and the electrodynamics interaction of the transmitting antenna with nonlinear characteristics with RES for other purposes. Component equations (NIE) of multi-input radiating structures that establish the relationship of amplitude-phase distribution at the inputs of radiators with distributed nonlinearity and amplitude-phase distribution on their surfaces are obtained. A mathematical model of multi-input radiator structures with nonlinear characteristics in the Fresnel zone for analysis purposes has been produced. Conclusions. The scientific novelty of the obtained results is as follows: a generalized theory of transmitting antennas of arbitrary configuration with nonlinear characteristics in the Fresnel zone, which makes it possible to analyze the characteristics of these antennas considering the positive and negative (beneficial and adverse) nonlinear effects that arise in them.


2021 ◽  
Author(s):  
Evgenia S. Abramova ◽  
Sergey F. Balandin ◽  
Vyacheslav F. Myshkin ◽  
Maria S. Pavlova ◽  
Vitaliy L. Khazan ◽  
...  

2021 ◽  
Author(s):  
Amir Parnianifard ◽  
Shahid Mumtaz ◽  
Sushank Chaudhary ◽  
Muhammad Ali Imran ◽  
Lunchakorn Wuttisittikulkij

Abstract Transmitting antenna positioning or transmitter placement is a well-known NP-hard optimization problem pertinent to communication systems. Furthermore, it is of practical importance to yield an optimal location of transmitters to ensure low sensitivity with respect to potential uncertainties. Notwithstanding, incorporating uncertainties in the optimization problem can highly increase the computational expenses. This paper aims at the development of a new reducedcost algorithm for a multi-objective robust transmitter placement under uncertainties. Toward this end, a new hybrid surrogate-metaheuristic approach is developed using Grey Wolf Optimizer (GWO) and the Kriging surrogate in a mathematical framework of a robust dual-surface model. The proposed algorithm is also able to analyze the sensitivity of the obtained optimal results. The latter is achieved by obtaining the bootstrapped confidence regions without extra simulation experiments. The paper investigates the performance of the proposed algorithm for robust optimal placing of two, three, and four transmitters, under uncertainties concerning the transmitting antenna gain. The results demonstrate the utility and the efficiency of the proposed method in rendering the robust optimal design and analyzing the sensitivity of the transmitter placement problem under practically acceptable computational efforts.


2021 ◽  
Vol 2085 (1) ◽  
pp. 012011
Author(s):  
Mingrui Wang ◽  
Mei Xu ◽  
Jiangfeng Wang ◽  
Yingying Guo

Abstract With the develofpment of UWB electromagnetic pulse radiation systems, people are paying more and more attention to its serious threat to electronic equipment. The effect of UWB electromagnetic pulse has also become an important content in the field of electromagnetic compatibility. In an UWB radiation system, the distance between the device under test and the transmitting antenna is different, and the radiation field received is also different. Therefore, in actual tests, the test body is often placed at different distances from the antenna to perform multiple measurements to obtain test data as required. Based on this, this article takes the cavity as an example, and proposes a method of using the system transfer function to predict the response of the impulse field inside the cavity to simplify the test and quickly obtain the test data. Firstly, the impulse field response of a certain point with and without a cavity is measured respectively, and then the time domain response is inversely Fourier transformed to obtain the frequency domain transfer function of the test body. Finally, using the transfer function to convolute with the field to be measured, the response of the impulse field inside the cavity can be predicted under the condition of the field to be measured. It is verified by experiments that this method can better predict the response of the impulse field inside the cavity under different distance conditions, and has the characteristics of simple calculation and good prediction effect. At the same time, the transfer function obtained by this method can be used to predict the arbitrary impulse field response of the cavity in its frequency range.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022005
Author(s):  
A O Zhukov ◽  
E G Zhilyakov ◽  
I I Oleynik ◽  
S G Orishchuk ◽  
P A Fedorov ◽  
...  

Abstract The methods of synthesis of the directional diagram of active transmitting antenna arrays when receiving signals reflected from radar targets are considered. It is shown that when using multifrequency orthogonal coherent signals in the elements and addressable access at their reception it is possible to provide a small level of the side lobes of the spatial uncertainty function in a given sector of observation by selecting the type of intrapulse modulation of partial signals. Orthogonalization of antenna basis of transmitting and receiving antennas allows digital spectral-correlation processing of samples of aggregate signal from each target to solve the technological problem of multidimensional observation space in multiposition systems of coherent radiolocation when detecting, resolving, estimating coordinates and motion parameters of targets. The results of simulation modeling of spatio-temporal radar modems implemented according to the stated principles are given.


Author(s):  
Prabha Kumari

Abstract: In this article, we proposed a multiple input multiple outputs (MIMO) technique such as spectrally efficient adaptive quadrature spatial modulation (SEAQSM) which is based on space modulation techniques (SMTs). SMTs are logarithmically proportional to transmitting antenna & this technique fulfills the requirement of high data rate in the MIMO system. The Spatial position of the transmitting antenna improves the performance of the MIMO system. In space modulation technique spectral efficiency is logarithmically proportional to transmit antenna, if we increase the antenna at the transmitter end then the bandwidth efficiency significantly improved. We have to improve the performance MIMO system, minimize the latency and low power consumption. The proposed technique performance is explored over Rayleigh fading channel for a particular MIMO. These techniques underestimate the transmit antennas with less RF chain. In this paper, we analyzed the performance of our proposed scheme with conventional SM and QSM by using MONTE CARLO Simulation in term of BER with distinct order of QAM symbol. SE acquired for varying SNR at a BER of 10−3are obtained for uncorrelated Rayleigh channel. Keywords: Spatial Modulation(SM), MIMO, Spectral efficiency, Energy efficiency, Quadrature Spatial Modulation (QAM), Maximum Likelihood (ML) detector.


2021 ◽  
Vol 13 (18) ◽  
pp. 3733
Author(s):  
Hoonyol Lee ◽  
Jihyun Moon

Ground-based synthetic aperture radar (GB-SAR) is a useful tool to simulate advanced SAR systems with its flexibility on RF system and SAR configuration. This paper reports an indoor experiment of bistatic/multistatic GB-SAR operated in Ku-band with two antennae: one antenna was stationary on the ground and the other was moving along a linear rail. Multiple bistatic GB-SAR images were taken with various stationary antenna positions, and then averaged to simulate a multistatic GB-SAR configuration composed of a moving Tx antenna along a rail and multiple stationary Rx antennae with various viewing angles. This configuration simulates the use of a spaceborne/airborne SAR system as a transmitting antenna and multiple ground-based stationary antennae as receiving antennae to obtain omni-directional scattering images. This SAR geometry with one-stationary and one-moving antennae configuration was analyzed and a time-domain SAR focusing algorithm was adjusted to this geometry. Being stationary for one antenna, the Doppler rate was analyzed to be half of the monostatic case, and the azimuth resolution was doubled. Image quality was enhanced by identifying and reducing azimuth ambiguity. By averaging multiple bistatic images from various stationary antenna positions, a multistatic GB-SAR image was achieved to have better image swath and reduced speckle noise.


Sign in / Sign up

Export Citation Format

Share Document