Wave extrapolation in the spatial wavelet domain with application to poststack reverse‐time migration

Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 589-600 ◽  
Author(s):  
Yafei Wu ◽  
George A. McMechan

A wavelet transformation is performed over each of the spatial coordinates of the scalar wave equation. This transformed equation is solved directly with a finite‐difference scheme for both homogeneous and smooth inhomogeneous media. Wavefield extrapolation is performed completely in the spatial wavelet domain without transforming back into the space domain at each time step. The wavelet coefficients are extrapolated, rather than the wavefield itself. The numerical solution of the scalar wave equation in the spatial wavelet domain is closely related to the finite‐difference method because of the compact support of the wavelet bases. Poststack reverse‐time migration is implemented as an application. The resolution spaces of the wavelet transform provide a natural framework for multigrid analysis. Migrated images are constructed from various resolution spaces.

Geophysics ◽  
1997 ◽  
Vol 62 (3) ◽  
pp. 906-917 ◽  
Author(s):  
Jinming Zhu ◽  
Larry R. Lines

Reverse‐time migration applies finite‐difference wave equation solutions by using unaliased time‐reversed recorded traces as seismic sources. Recorded data can be sparsely or irregularly sampled relative to a finely spaced finite‐difference mesh because of the nature of seismic acquisition. Fortunately, reliable interpolation of missing traces is implicitly included in the reverse‐time wave equation computations. This implicit interpolation is essentially based on the ability of the wavefield to “heal itself” during propagation. Both synthetic and real data examples demonstrate that reverse‐time migration can often be performed effectively without the need for explicit interpolation of missing traces.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 246-255 ◽  
Author(s):  
Oong K. Youn ◽  
Hua‐wei Zhou

Depth imaging with multiples is a prestack depth migration method that uses multiples as the signal for more accurate boundary mapping and amplitude recovery. The idea is partially related to model‐based multiple‐suppression techniques and reverse‐time depth migration. Conventional reverse‐time migration uses the two‐way wave equation for the backward wave propagation of recorded seismic traces and ray tracing or the eikonal equation for the forward traveltime computation (the excitation‐time imaging principle). Consequently, reverse‐time migration differs little from most other one‐way wave equation or ray‐tracing migration methods which expect only primary reflection events. Because it is almost impossible to attenuate multiples without degrading primaries, there has been a compelling need to devise a tool to use multiples constructively in data processing rather than attempting to destroy them. Furthermore, multiples and other nonreflecting wave types can enhance boundary imaging and amplitude recovery if a full two‐way wave equation is used for migration. The new approach solves the two‐way wave equation for both forward and backward directions of wave propagation using a finite‐difference technique. Thus, it handles all types of acoustic waves such as reflection (primary and multiples), refraction, diffraction, transmission, and any combination of these waves. During the imaging process, all these different types of wavefields collapse at the boundaries where they are generated or altered. The process goes through four main steps. First, a source function (wavelet) marches forward using the full two‐way scalar wave equation from a source location toward all directions. Second, the recorded traces in a shot gather march backward using the full two‐way scalar wave equation from all receiver points in the gather toward all directions. Third, the two forward‐ and backward‐propagated wavefields are correlated and summed for all time indices. And fourth, a Laplacian image reconstruction operator is applied to the correlated image frame. This technique can be applied to all types of seismic data: surface seismic, vertical seismic profile (VSP), crosswell seismic, vertical cable seismic, ocean‐bottom cable (OBC) seismic, etc. Because it migrates all wave types, the input data require no or minimal preprocessing (demultiple should not be done, but near‐surface or acquisition‐related problems might need to be corrected). Hence, it is only a one‐step process from the raw field gathers to a final depth image. External noise in the raw data will not correlate with the forward wavefield except for some coincidental matching; therefore, it is usually unnecessary to do signal enhancement processing before the depth imaging with multiples. The input velocity model could be acquired from various methods such as iterative focusing analysis or tomography, as in other prestack depth migration methods. The new method has been applied to data sets from a simple multiple‐generating model, the Marmousi model, and a real offset VSP. The results show accurate imaging of primaries and multiples with overall significant improvements over conventionally imaged sections.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA153-WCA158 ◽  
Author(s):  
Faqi Liu ◽  
Guanquan Zhang ◽  
Scott A. Morton ◽  
Jacques P. Leveille

The acoustic wave equation has been widely used for the modeling and reverse time migration of seismic data. Numerical implementation of this equation via finite-difference techniques has established itself as a valuable approach and has long been a favored choice in the industry. To ensure quality results, accurate approximations are required for spatial and time derivatives. Traditionally, they are achieved numerically by using either relatively very fine computation grids or very long finite-difference operators. Otherwise, the numerical error, known as numerical dispersion, is present in the data and contaminates the signals. However, either approach will result in a considerable increase in the computational cost. A simple and computationally low-cost modification to the standard acoustic wave equation is presented to suppress numerical dispersion. This dispersion attenuator is one analogy of the antialiasing operator widely applied in Kirchhoff migration. When the new wave equation is solved numerically using finite-difference schemes, numerical dispersion in the original wave equation is attenuated significantly, leading to a much more accurate finite-difference scheme with little additional computational cost. Numerical tests on both synthetic and field data sets in both two and three dimensions demonstrate that the optimized wave equation dramatically improves the image quality by successfully attenuating dispersive noise. The adaptive application of this new wave equation only increases the computational cost slightly.


2014 ◽  
Vol 32 (4) ◽  
pp. 753 ◽  
Author(s):  
Rafael L. de Araújo ◽  
Reynam Da C. Pestana

ABSTRACT. Within the seismic method, in order to obtain an accurate image, it is necessary to use some processing techniques, among them the seismic migration. The reverse time migration (RTM) uses the complete wave equation, which implicitly includes multiple arrivals, can image all dips and, therefore, makes it possible to image complex structures. However, its application on 3D pre-stack data is still restricted due to the enormous computational effort required. With recent technological advances and faster computers, 3D pre-stack RTM is being used to address the imaging challenges posed by sub-salt and other complex subsurface targets. Thus, in order to balance processing cost and with image’s quality and confiability, different numeric methods are used to compute the migration. This work presents two different ways of performing the reverse time migration using the complete wave equation: RTMby interpolation and by the pseudo-analytical method. The first migrates the data with different constant velocities and interpolate the results, while the second uses modifications in the computation of the Laplacian operator inorder to improve the finite difference scheme used to approximate the second-order time derivative, making it possible to propagate the wave field stably even using larger time steps. The method’s applicability was tested by the migration of two-dimensional pre- and pos-stack synthetic datasets, the SEG/EAGE salt model and the Marmousi model. A real pre-stack data from the Gulf of Mexico was migrated successfully and is also presented. Through the numerical examples the applicabilityand robustness of these methods were proved and it was also showed that they can extrapolate wavefields with a much larger time step than commonly used.Keywords: acoustic wave equation, seismic migration, reverse time migration, pseudo-spectral method, pseudo-analytical method, pseudo-Laplacian operator. RESUMO. No método sísmico, a fim de se obter uma imagem precisa, faz-se necessário o uso de técnicas de processamento, entre elas a migração sísmica.A migração reversa no tempo (RTM) empregada aqui não é um conceito novo. Ela usa a equação completa da onda, implicitamente inclui múltiplas chegadas, consegue imagear todos os mergulhos e, assim, possibilita o imageamento de estruturas complexas. Porém, sua aplicação em problemas 3D pré-empilhamento continua endo restrita por conta do grande esforço computacional requerido. Mas, recentemente, com o avanço tecnológico e computadores mais rápidos, a migração 3D pré-empilhamento tem sido aplicada, especialmente, em problemas de difícil imageamento, como o de estruturas complexas em regiões de pré-sal. Assim, com o intuito de equilibrar o custo de processamento com a qualidade e confiabilidade da imagem obtida, são utilizados diferentes métodos numéricos para computar a migração. Este trabalho apresenta duas diferentes maneiras de se realizar a migração reversa no tempo partindo da solução exata da equação completa da onda: RTM por interpolação e pelo método pseudo-analítico. No método de interpolação, a migração é aplicada utilizando-se várias velocidades constantes, seguido de um procedimento de interpolação para obter a imagem migrada através da composição das imagens computadas a partir dessas velocidades constantes. Já no método pseudo-analítico, introduz-se modificações no cálculo do operador Laplaciano visando melhorar a aproximação da derivada segunda no tempo, que são feitas por esquemas de diferenças finitas de segunda ordem, possibilitando assim propagar o campo de onda de forma estável usando-se passos maiores no tempo. A aplicabilidadedas metodologias foi testada por meio da migração de dados bidimensionais sintéticos pré e pós-empilhamento, o modelo de domo de sal da SEG/EAGE e o modelo Marmousi. Um dado real bidimensional, adquirido no Golfo do México não empilhado, também, foi usado e migrado com sucesso. Assim, através desses exemplos numéricos, mostra-se a aplicabilidade e a robustez desses novos métodos de migração reversa no tempo no imageamento de estruturas complexas com os campos de ondas propagados com passos maiores no tempo do que os usados comumente.Palavras-chave: equação da onda, migração sísmica, migração reversa no tempo, método pseudo-espectral, método pseudo-analítico, operador pseudo-Laplaciano.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. S401-S409
Author(s):  
Hong Liang ◽  
Houzhu Zhang

Reverse time migration (RTM) is implemented by solving the two-way wave equation using recorded data as boundary conditions. The full wave equation can simulate wave propagation in all directions; thus, RTM has no dip limitations and is capable of imaging complex structures. Because wavefields are allowed to travel in all directions, the source and receiver wavefields can be scattered back from strong velocity contrasts. The crosscorrelation of head waves, diving waves, and backscattered waves along a raypath can lead to strong artifacts in the RTM image. These artifacts degrade the final image quality. An inversion-based imaging condition that computes the weighted sum of a time derivative image and a spatial gradient image can significantly reduce the RTM artifacts. Based on the multiscale directional selectivity property of the wavelet transform, we have developed a new method to compute the weighting function for the inversion-based imaging condition in the wavelet domain. The unique property of this approach is that the weighting function depends on the spatial locations, wavenumber, and local directions. This multidimensional property allows us to selectively remove the RTM image artifacts while preserving useful energy. We determine the effectiveness of our method for attenuating RTM artifacts using synthetic examples.


Geophysics ◽  
1996 ◽  
Vol 61 (3) ◽  
pp. 845-856 ◽  
Author(s):  
Wen‐Jing Wu ◽  
Larry R. Lines ◽  
Han‐Xing Lu

The design and usefulness of practical algorithms for 3-D reverse‐time depth migration is examined, while demonstrating data applications of the algorithm. We evaluate quantitatively the accuracy of the finite‐difference operator from second‐order to eighth‐order for the scalar wave equation by comparing numerical and analytical solutions. The results clearly show the advantage of using higher‐order, finite‐difference schemes, especially from second‐order to fourth‐order for space derivatives. Hence, a finite‐difference method with the accuracy of fourth‐order in space and second‐order in time is applied to 3-D full scalar wave equations in reverse‐time migration. Considerable savings in CPU and memory are obtained by using larger horizontal grid spacings than the vertical spacings. Therefore, we derive dispersion and stability conditions for such unequal grid spacing. The 3-D reverse‐time migration of data from the Hibernia Field shows an image improvement over 2-D migrations, despite the fact that much of the structure was considered to be approximately 2-D. Stable, nondispersive, finite‐difference methods of higher order can allow for tractable and efficient 3-D reverse‐time migration solutions.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. T21-T27 ◽  
Author(s):  
Adel Khalil ◽  
Mohamed Hesham ◽  
Mohamed El-Beltagy

We propose to solve the two-way time domain acoustic wave equation in a generalized Riemannian coordinate system via finite-differences. The coordinate system is defined in such a way that one of its independent variables conforms to the primary wavefront, for example, using a ray coordinate system with the traveltime being one of the coordinates. At each finite-difference time-step, the solution domain is limited to a narrow corridor around the primary wavefront, leading to an increase in the computational performance. A new finite-difference scheme is introduced to stabilize the solution and facilitate its implementation. This new scheme is a blend of the simple explicit and the stable implicit schemes. As a proof of concept, the proposed method is compared to the classical explicit finite-difference scheme performed in Cartesian coordinates on two synthetic velocity models with varying complexities. At a reduced cost, the proposed method produces similar results to the classical one; however, some amplitude differences arise due to various implementation issues. The most direct application for the proposed method is the source side of reverse time migration.


Sign in / Sign up

Export Citation Format

Share Document