PP-wave reflection coefficients in weakly anisotropic elastic media

Geophysics ◽  
1998 ◽  
Vol 63 (6) ◽  
pp. 2129-2141 ◽  
Author(s):  
Václav Vavryuk ◽  
Ivan Peník

Approximate PP-wave reflection coefficients for weak contrast interfaces separating elastic, weakly transversely isotropic media have been derived recently by several authors. Application of these coefficients is limited because the axis of symmetry of transversely isotropic media must be either perpendicular or parallel to the reflector. In this paper, we remove this limitation by deriving a formula for the PP-wave reflection coefficient for weak contrast interfaces separating two weakly but arbitrarily anisotropic media. The formula is obtained by applying the first‐order perturbation theory. The approximate coefficient consists of a sum of the PP-wave reflection coefficient for a weak contrast interface separating two background isotropic half‐spaces and a perturbation attributable to the deviation of anisotropic half‐spaces from their isotropic backgrounds. The coefficient depends linearly on differences of weak anisotropy parameters across the interface. This simplifies studies of sensitivity of such coefficients to the parameters of the surrounding structure, which represent a basic part of the amplitude‐versus‐offset (AVO) or amplitude‐versus‐azimuth (AVA) analysis. The reflection coefficient is reciprocal. In the same way, the formula for the PP-wave transmission coefficient can be derived. The generalization of the procedure presented for the derivation of coefficients of converted waves is also possible although slightly more complicated. Dependence of the reflection coefficient on the angle of incidence is expressed in terms of three factors, as in isotropic media. The first factor alone describes normal incidence reflection. The second yields the low‐order angular variations. All three factors describe the coefficient in the whole region, in which the approximate formula is valid. In symmetry planes of weakly anisotropic media of higher symmetry, the approximate formula reduces to the formulas presented by other authors. The accuracy of the approximate formula for the PP reflection coefficient is illustrated on the model with an interface separating an isotropic half‐space from a half‐space filled by a transversely isotropic material with a horizontal axis of symmetry. The results show a very good fit with results of the exact formula, even in cases of strong anisotropy and strong velocity contrast.

Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1359-1363 ◽  
Author(s):  
He Chen ◽  
John P. Castagna ◽  
Raymon L. Brown ◽  
Antonio C. B. Ramos

Amplitude versus offset (AVO) interpretation can be facilitated by crossplotting AVO intercept (A), gradient (B), and curvature (C) terms. However, anisotropy, which exists in the real world, usually complicates AVO analysis. Recognizing anisotropic behavior on AVO crossplots can help avoid AVO interpretation errors. Using a modification to a three‐term (A, B, and C) approximation to the exact anisotropic reflection coefficients for transversely isotropic media, we find that anisotropy has a nonlinear effect on an A versus C crossplot yet causes slope changes and differing intercepts on A versus B or C crossplots. Empirical corrections that result in more accurate crossplot interpretation are introduced for specific circumstances.


Geophysics ◽  
1997 ◽  
Vol 62 (3) ◽  
pp. 713-722 ◽  
Author(s):  
Andreas Rüger

The study of P‐wave reflection coefficients in anisotropic media is important for amplitude variation with offset (AVO) analysis. While numerical evaluation of the reflection coefficient is straightforward, numerical solutions do not provide analytic insight into the influence of anisotropy on the AVO signature. To overcome this difficulty, I present an improved approximation for P‐wave reflection coefficients at a horizontal boundary in transversely isotropic media with vertical axis of symmetry (VTI media). This solution has the same AVO‐gradient term describing the low‐order angular variation of the reflection coefficient as the equations published previously, but is more accurate for large incidence angles. The refined approximation is then extended to transverse isotropy with a horizontal axis of symmetry (HTI), which is caused typically by a system of vertical cracks. Comparison of the approximate reflection coefficients for P‐waves incident in the two vertical symmetry planes of HTI media indicates that the azimuthal variation of the AVO gradient is a function of the shear‐wave splitting parameter γ, and the anisotropy parameter describing P‐wave anisotropy for nearvertical propagation in the vertical plane containing the symmetry axis.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xinpeng Pan ◽  
Lin Li ◽  
Guangzhi Zhang ◽  
Yian Cui

The rock containing a set of tilted fractures is equivalent to a transversely isotropic (TTI) medium with a tilted axis of symmetry. To implement fluid identification and tilted fracture detection, we propose an inversion approach of utilizing seismic data to simultaneously estimate parameters that are sensitive to fluids and tilted fractures. We first derive a PP-wave reflection coefficient and elastic impedance (EI) in terms of the dip angle, fluid/porosity term, shear modulus, density, and fracture weaknesses, and we present numerical examples to demonstrate how the PP-wave reflection coefficient and EI vary with the dip angle. Based on the information of dip angle of fractures provided by geologic and well data, we propose a two-step inversion approach of utilizing azimuthal seismic data to estimate unknown parameters involving the fluid/porosity term and fracture weaknesses: (1) the constrained sparse spike inversion (CSSI) for azimuthally anisotropic EI data and (2) the estimation of unknown parameters with the low-frequency constrained regularization term. Synthetic and real data demonstrate that fluid and fracture parameters are reasonably estimated, which may help fluid identification and fracture characterization.


Geophysics ◽  
1995 ◽  
Vol 60 (5) ◽  
pp. 1409-1425 ◽  
Author(s):  
Ilya Tsvankin

The angular dependence of reflection coefficients may be significantly distorted in the presence of elastic anisotropy. However, the influence of anisotropy on amplitude variation with offset (AVO) analysis is not limited to reflection coefficients. AVO signatures (e.g., AVO gradient) in anisotropic media are also distorted by the redistribution of energy along the wavefront of the wave traveling down to the reflector and back up to the surface. Significant anisotropy above the target horizon may be rather typical of sand‐shale sequences commonly encountered in AVO analysis. Here, I examine the influence of P‐ and S‐wave radiation patterns on AVO in the most common anisotropic model—transversely isotropic media. A concise analytic solution, obtained in the weak‐anisotropy approximation, provides a convenient way to estimate the impact of the distortions of the radiation patterns on AVO results. It is shown that the shape of the P‐wave radiation pattern in the range of angles most important to AVO analysis (0–40°) is primarily dependent on the difference between Thomsen parameters ε and δ. For media with ε − δ > 0 (the most common case), the P‐wave amplitude may drop substantially over the first 25–40° from vertical. There is no simple correlation between the strength of velocity anisotropy and angular amplitude variations. For instance, for models with a fixed positive ε − δ the amplitude distortions are less pronounced for larger values of ε and δ. The distortions of the SV‐wave radiation pattern are usually much more significant than those for the P‐wave. The anisotropic directivity factor for the incident wave may be of equal or greater importance for AVO than the influence of anisotropy on the reflection coefficient. Therefore, interpretation of AVO anomalies in the presence of anisotropy requires an integrated approach that takes into account not only the reflection coefficient but also the wave propagation above the reflector.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R195-R206 ◽  
Author(s):  
Chao Song ◽  
Tariq Alkhalifah

Conventional full-waveform inversion (FWI) aims at retrieving a high-resolution velocity model directly from the wavefields measured at the sensor locations resulting in a highly nonlinear optimization problem. Due to the high nonlinearity of FWI (manifested in one form in the cycle-skipping problem), it is easy to fall into local minima. Considering that the earth is truly anisotropic, a multiparameter inversion imposes additional challenges in exacerbating the null-space problem and the parameter trade-off issue. We have formulated an optimization problem to reconstruct the wavefield in an efficient matter with background models by using an enhanced source function (which includes secondary sources) in combination with fitting the data. In this two-term optimization problem to fit the wavefield to the data and to the background wave equation, the inversion for the wavefield is linear. Because we keep the modeling operator stationary within each frequency, we only need one matrix inversion per frequency. The inversion for the anisotropic parameters is handled in a separate optimization using the wavefield and the enhanced source function. Because the velocity is the dominant parameter controlling the wave propagation, it is updated first. Thus, this reduces undesired updates for anisotropic parameters due to the velocity update leakage. We find the effectiveness of this approach in reducing parameter trade-off with a distinct Gaussian anomaly model. We find that in using the parameterization [Formula: see text], and [Formula: see text] to describe the transversely isotropic media with a vertical axis of symmetry model in the inversion, we end up with high resolution and minimal trade-off compared to conventional parameterizations for the anisotropic Marmousi model. Application on 2D real data also indicates the validity of our method.


Geophysics ◽  
1978 ◽  
Vol 43 (3) ◽  
pp. 528-537 ◽  
Author(s):  
Franklyn K. Levin

Assuming media having a velocity dependence on angle which is an ellipse, we have confirmed previously reported time‐distance relations for reflections from single interfaces, for reflections from sections of beds separated by horizontal interfaces, for refraction arrivals, and added the expression for diffractions. We also have derived expressions for plane‐wave reflection and transmission coefficients at an interface separating two transversely isotropic media. None of the properties differs greatly from those for isotropic media. However, velocities found from seismic surface reflections or refractions are horizontal components. There seems to be no way of obtaining vertical components of velocity from surface measurements alone and hence no way to compute depths from surface data.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. C1-C14 ◽  
Author(s):  
Ramzi Djebbi ◽  
Tariq Alkhalifah

Multiparameter full-waveform inversion for transversely isotropic media with a vertical axis of symmetry (VTI) suffers from the trade-off between the parameters. The trade-off results in the leakage of one parameter’s update into the other. It affects the accuracy and convergence of the inversion. The sensitivity analyses suggested a parameterization using the horizontal velocity [Formula: see text], Thomsen’s parameter [Formula: see text], and the anelliptic parameter [Formula: see text] to reduce the trade-off for surface recorded seismic data. We aim to invert for this parameterization using the scattering integral (SI) method. The available Born sensitivity kernels, within this approach, can be used to calculate additional inversion information. We mainly compute the diagonal of the approximate Hessian, used as a conjugate-gradient preconditioner, and the gradients’ step lengths. We consider modeling in the frequency domain. The large computational cost of the SI method can be avoided with direct Helmholtz equation solvers. We applied our method to the VTI Marmousi II model for various inversion strategies. We found that we can invert the [Formula: see text] accurately. For the [Formula: see text] parameter, only the short wavelengths are well-recovered. On the other hand, the [Formula: see text] parameter impact is weak on the inversion results and can be fixed. However, a good background [Formula: see text], with accurate long wavelengths, is needed to correctly invert for [Formula: see text]. Furthermore, we invert a real data set acquired by CGG from offshore Australia. We simultaneously invert all three parameters using our inversion approach. The velocity model is improved, and additional layers are recovered. We confirm the accuracy of the results by comparing them with well-log information, as well as looking at the data and angle gathers.


Sign in / Sign up

Export Citation Format

Share Document