Reflectivity randomness revisited

Geophysics ◽  
1999 ◽  
Vol 64 (5) ◽  
pp. 1630-1636 ◽  
Author(s):  
Ayon K. Dey ◽  
Larry R. Lines

In seismic exploration, statistical wavelet estimation and deconvolution are standard tools. Both of these processes assume randomness in the seismic reflectivity sequence. The validity of this assumption is examined by using well‐log synthetic seismograms and by using a procedure for evaluating the resulting deconvolutions. With real data, we compare our wavelet estimations with the in‐situ recording of the wavelet from a vertical seismic profile (VSP). As a result of our examination of the randomness assumption, we present a fairly simple test that can be used to evaluate the validity of a randomness assumption. From our test of seismic data in Alberta, we conclude that the assumption of reflectivity randomness is less of a problem in deconvolution than other assumptions such as phase and stationarity.

Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. S135-S150
Author(s):  
Jakob B. U. Haldorsen ◽  
Leif Jahren

We have determined how the measured polarization and traveltime for P- and S-waves can be used directly with vertical seismic profile data for estimating the salt exit points in a salt-proximity survey. As with interferometry, the processes described use only local velocities. For the data analyzed in this paper, our procedures have confirmed the location, inferred from surface-seismic data, of the flank of a steeply dipping salt body near the well. This has provided us more confidence in the estimated reservoir extent moving toward the salt face, which in turn has added critical information for the economic evaluation of a possible new well into the reservoir. We also have found that ray-based vector migration, based on the assumptions of locally plane wavefronts and locally plane formation interfaces, can be used to create 3D reflection images of steeply dipping sediments near the well, again using only local velocities. Our local reflection images have helped confirm the dips of the sediments between the well and the salt flank. Because all parameters used in these processes are local and can be extracted from the data themselves, the processes can be considered to be self-sufficient.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 191-203 ◽  
Author(s):  
A. Frank Linville ◽  
Robert A. Meek

Primary reflections in seismic records are often obscured by coherent noise making processing and interpretation difficult. Trapped water modes, surface waves, scattered waves, air waves, and tube waves to name a few, must be removed early in the processing sequence to optimize subsequent processing and imaging. We have developed a noise canceling algorithm that effectively removes many of the commonly encountered noise trains in seismic data. All currently available techniques for coherent noise attenuation suffer from limitations that introduce unacceptable signal distortions and artifacts. Also, most of those techniques impose the dual stringent requirements of equal and fine spatial sampling in the field acquisition of seismic data. Our technique takes advantage of characteristics usually found in coherent noise such as being localized in time, highly aliased, nondispersive (or only mildly so), and exhibit a variety of moveout patterns across the seismic records. When coherent noise is localized in time, a window much like a surgical mute is drawn around the noise. The algorithm derives an estimate of the noise in the window, automatically correcting for amplitude and phase differences, and adaptively subtracts this noise from the window of data. This signal estimate is then placed back in the record. In a model and a land data example, the algorithm removes noise more effectively with less signal distortion than does f-k filtering or velocity notch filtering. Downgoing energy in a vertical seismic profile (VSP) with irregular receiver spacing is also removed.


1984 ◽  
Vol 24 (1) ◽  
pp. 429
Author(s):  
F. Sandnes W. L. Nutt ◽  
S. G. Henry

The improvement of acquisition and processing techniques has made it possible to study seismic wavetrains in boreholes.With careful acquisition procedures and quantitative data processing, one can extract useful information on the propagation of seismic events through the earth, on generation of multiples and on the different reflections coming from horizons that may not all be accessible by surface seismic.An extensive borehole seismic survey was conducted in a well in Conoco's contract area 'Block B' in the South China Sea. Shots at 96 levels were recorded, and the resulting Vertical Seismic Profile (VSP) was carefully processed and analyzed together with the Synthetic Seismogram (Geogram*) and the Synthetic Vertical Seismic Profile (Synthetic VSP).In addition to the general interpretation of the VSP data, i.e. time calibration of surface seismic, fault identification, VSP trace inversion and VSP Direct Signal Analysis, the practical inclusion of VSP data in the reprocessing of surface seismic data was studied. Conclusions that can be drawn are that deconvolution of surface seismic data using VSP data must be carefully approached and that VSP can be successfully used to examine phase relationships in seismic data.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. WB219-WB224 ◽  
Author(s):  
Weiping Cao ◽  
Gerard T. Schuster

An antialiasing formula has been derived for interferometric redatuming of seismic data. More generally, this formula is valid for numerical implementation of the reciprocity equation of correlation type, which is used for redatuming, extrapolation, interpolation, and migration. The antialiasing condition can be, surprisingly, more tolerant of a coarser trace sampling compared to the standard antialiasing condition. Numerical results with synthetic vertical seismic profile (VSP) data show that interferometry artifacts are effectively reduced when the antialiasing condition is used as a constraint with interferometric redatuming.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. U53-U63 ◽  
Author(s):  
Andrea Tognarelli ◽  
Eusebio Stucchi ◽  
Alessia Ravasio ◽  
Alfredo Mazzotti

We tested the properties of three different coherency functionals for the velocity analysis of seismic data relative to subbasalt exploration. We evaluated the performance of the standard semblance algorithm and two high-resolution coherency functionals based on the use of analytic signals and of the covariance estimation along hyperbolic traveltime trajectories. Approximate knowledge of the wavelet was exploited to design appropriate filters that matched the primary reflections, thereby further improving the ability of the functionals to highlight the events of interest. The tests were carried out on two synthetic seismograms computed on models reproducing the geologic setting of basaltic intrusions and on common midpoint gathers from a 3D survey. Synthetic and field data had a very low signal-to-noise ratio, strong multiple contamination, and weak primary subbasalt signals. The results revealed that high-resolution coherency functionals were more suitable than semblance algorithms to detect primary signals and to distinguish them from multiples and other interfering events. This early discrimination between primaries and multiples could help to target specific signal enhancement and demultiple operations.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. P109-P118
Author(s):  
Huailiang Li ◽  
Xianguo Tuo ◽  
Tong Shen ◽  
Mark Julian Henderson ◽  
Jérémie Courtois

Calibration of 3C vertical seismic profile (VSP) data is an exciting challenge because the orientation of the tool is random when only seismic data are considered. We have augmented the sensor package on the VSP tool with micro-electro-mechanical system (MEMS) inertial sensors and applied a gesture measuring method to determine the tool orientation and calibration. This technique can quickly produce high precision, orientation, and angle information when integrated with the seismometer. The augmented sensor package consists of a low-cost triaxial MEMS gyroscope, an electronic compass, and an accelerometer. The technique to process the gesture information is based on the OpenGL software for 3D modeling. We have tested this approach on a large number of field data sets and it appeared to be faster and more reliable than other approaches.


Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. B125-B134 ◽  
Author(s):  
Xiujuan Wang ◽  
Myung Lee ◽  
Shiguo Wu ◽  
Shengxiong Yang

Wireline logs were acquired in eight wells during China’s first gas hydrate drilling expedition (GMGS-1) in April–June of 2007. Well logs obtained from site SH3 indicated gas hydrate was present in the depth range of 195–206 m below seafloor with a maximum pore-space gas hydrate saturation, calculated from pore water freshening, of about 26%. Assuming gas hydrate is uniformly distributed in the sediments, resistivity calculations using Archie’s equation yielded hydrate-saturation trends similar to those from chloride concentrations. However, the measured compressional (P-wave) velocities decreased sharply at the depth between 194 and 199 mbsf, dropping as low as [Formula: see text], indicating the presence of free gas in the pore space, possibly caused by the dissociation of gas hydrate during drilling. Because surface seismic data acquired prior to drilling were not influenced by the in situ gas hydrate dissociation, surface seismic data could be used to identify the cause of the low P-wave velocity observed in the well log. To determine whether the low well-log P-wave velocity was caused by in situ free gas or by gas hydrate dissociation, synthetic seismograms were generated using the measured well-log P-wave velocity along with velocities calculated assuming both gas hydrate and free gas in the pore space. Comparing the surface seismic data with various synthetic seismograms suggested that low P-wave velocities were likely caused by the dissociation of in situ gas hydrate during drilling.


Sign in / Sign up

Export Citation Format

Share Document