A rapid seismic data calibration technique using integrated micro-electro-mechanical system inertial sensor groups for a 3C vertical seismic profile

Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. P109-P118
Author(s):  
Huailiang Li ◽  
Xianguo Tuo ◽  
Tong Shen ◽  
Mark Julian Henderson ◽  
Jérémie Courtois

Calibration of 3C vertical seismic profile (VSP) data is an exciting challenge because the orientation of the tool is random when only seismic data are considered. We have augmented the sensor package on the VSP tool with micro-electro-mechanical system (MEMS) inertial sensors and applied a gesture measuring method to determine the tool orientation and calibration. This technique can quickly produce high precision, orientation, and angle information when integrated with the seismometer. The augmented sensor package consists of a low-cost triaxial MEMS gyroscope, an electronic compass, and an accelerometer. The technique to process the gesture information is based on the OpenGL software for 3D modeling. We have tested this approach on a large number of field data sets and it appeared to be faster and more reliable than other approaches.

Author(s):  
A Ghaffari ◽  
A Khodayari ◽  
S Nosoudi ◽  
S Arefnezhad

Micro-electro mechanical system-based inertial sensors have broad applications in moving objects including in vehicles for navigation purposes. The low-cost micro-electro mechanical system sensors are normally subject to high dynamic errors such as linear or nonlinear bias, misalignment errors and random noises. In the class of low cost sensors, keeping the accuracy at a reasonable range has always been challenging for engineers. In this paper, a novel method for calibrating low-cost micro-electro mechanical system accelerometers is presented based on soft computing approaches. The method consists of two steps. In the first step, a preliminary model for error sources is presented based on fuzzy subtractive clustering algorithm. This model is then improved using adaptive neuro-fuzzy systems. A Kalman filter is also used to calculate the vehicle velocity and its position based on calibrated measured acceleration. The performance of the presented approach has been validated in the simulated and real experimental driving scenarios. The results show that this method can improve the accuracy of the accelerometer output, measured velocity and position of the vehicle by 79.11%, 97.63% and 99.28%, in the experimental test, respectively. The presented procedure can be used in collision avoidance and emergency brake assist systems.


Autonomous vehicle navigation has witnessed a huge revolutionary revision regarding development in Micro-Electro Mechanical System (MEMS) technology. Most recently, Strapdown Inertial Navigation System (SDINS) has successfully been integrated with Global Positioning System (GPS). However, different grades of MEMS inertial sensors are available and choosing the convenient grade is quite important. Noises in inertial sensor are mostly treated through de-noising the additive errors to improve the precision of SDINS output. Unfortunately, integration in SDINS mechanization causes a growing in SDINS error output which considered the main challenge in integrating MEMS inertial sensors with GPS. This paper aims to promote the long-term performance of the MEMS-SDINS/GPS integrated system. A new integrated structure is proposed to model the nonlinearities that exist in SDINS dynamics in addition to the error uncertainty in the inertial sensors’ measurements. A robust Nonlinear AutoRegressive models with eXogenous inputs (NARX) based algorithm are designed for data fusion in the proposed GPS/INS integrated system. Validation for the proposed integrated system has been carried out using different field tests data in order to assess the accuracy of the system during GPS denied environment. The results obtained demonstrate that the proposed NARX model is applicative and satisfactory which shows a desired prediction performance.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 120
Author(s):  
Ningbo Li ◽  
Lianwu Guan ◽  
Yanbin Gao ◽  
Zhejun Liu ◽  
Ye Wang ◽  
...  

Vehicles have to rely on satellite navigation in an open environment. However, satellite navigation cannot obtain accurate positioning information for vehicles in the interior of underground parking lots, as they comprise a semi-enclosed navigation space. Therefore, vehicular navigation needs to take into consideration both outdoor and indoor environments. Actually, outdoor navigation and indoor navigation require different positioning methods, and it is of great importance to choose a reasonable navigation and positioning algorithm solution for vehicles. Fortunately, the integrated navigation of the Global Positioning System (GPS) and the Micro-Electro-Mechanical System (MEMS) inertial navigation system could solve the problem of switching navigation algorithms in the entrance and exit of underground parking lots. This paper proposes a low cost vehicular seamless navigation technology based on the reduced inertial sensor system (RISS)/GPS between the outdoors and an underground garage. Specifically, the enhanced RISS is a positioning algorithm based on three inertial sensors and one odometer, which could achieve a similar location effect as the full model integrated navigation, reduce the costs greatly, and improve the efficiency of each sensor.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. S135-S150
Author(s):  
Jakob B. U. Haldorsen ◽  
Leif Jahren

We have determined how the measured polarization and traveltime for P- and S-waves can be used directly with vertical seismic profile data for estimating the salt exit points in a salt-proximity survey. As with interferometry, the processes described use only local velocities. For the data analyzed in this paper, our procedures have confirmed the location, inferred from surface-seismic data, of the flank of a steeply dipping salt body near the well. This has provided us more confidence in the estimated reservoir extent moving toward the salt face, which in turn has added critical information for the economic evaluation of a possible new well into the reservoir. We also have found that ray-based vector migration, based on the assumptions of locally plane wavefronts and locally plane formation interfaces, can be used to create 3D reflection images of steeply dipping sediments near the well, again using only local velocities. Our local reflection images have helped confirm the dips of the sediments between the well and the salt flank. Because all parameters used in these processes are local and can be extracted from the data themselves, the processes can be considered to be self-sufficient.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 191-203 ◽  
Author(s):  
A. Frank Linville ◽  
Robert A. Meek

Primary reflections in seismic records are often obscured by coherent noise making processing and interpretation difficult. Trapped water modes, surface waves, scattered waves, air waves, and tube waves to name a few, must be removed early in the processing sequence to optimize subsequent processing and imaging. We have developed a noise canceling algorithm that effectively removes many of the commonly encountered noise trains in seismic data. All currently available techniques for coherent noise attenuation suffer from limitations that introduce unacceptable signal distortions and artifacts. Also, most of those techniques impose the dual stringent requirements of equal and fine spatial sampling in the field acquisition of seismic data. Our technique takes advantage of characteristics usually found in coherent noise such as being localized in time, highly aliased, nondispersive (or only mildly so), and exhibit a variety of moveout patterns across the seismic records. When coherent noise is localized in time, a window much like a surgical mute is drawn around the noise. The algorithm derives an estimate of the noise in the window, automatically correcting for amplitude and phase differences, and adaptively subtracts this noise from the window of data. This signal estimate is then placed back in the record. In a model and a land data example, the algorithm removes noise more effectively with less signal distortion than does f-k filtering or velocity notch filtering. Downgoing energy in a vertical seismic profile (VSP) with irregular receiver spacing is also removed.


1984 ◽  
Vol 24 (1) ◽  
pp. 429
Author(s):  
F. Sandnes W. L. Nutt ◽  
S. G. Henry

The improvement of acquisition and processing techniques has made it possible to study seismic wavetrains in boreholes.With careful acquisition procedures and quantitative data processing, one can extract useful information on the propagation of seismic events through the earth, on generation of multiples and on the different reflections coming from horizons that may not all be accessible by surface seismic.An extensive borehole seismic survey was conducted in a well in Conoco's contract area 'Block B' in the South China Sea. Shots at 96 levels were recorded, and the resulting Vertical Seismic Profile (VSP) was carefully processed and analyzed together with the Synthetic Seismogram (Geogram*) and the Synthetic Vertical Seismic Profile (Synthetic VSP).In addition to the general interpretation of the VSP data, i.e. time calibration of surface seismic, fault identification, VSP trace inversion and VSP Direct Signal Analysis, the practical inclusion of VSP data in the reprocessing of surface seismic data was studied. Conclusions that can be drawn are that deconvolution of surface seismic data using VSP data must be carefully approached and that VSP can be successfully used to examine phase relationships in seismic data.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. WB219-WB224 ◽  
Author(s):  
Weiping Cao ◽  
Gerard T. Schuster

An antialiasing formula has been derived for interferometric redatuming of seismic data. More generally, this formula is valid for numerical implementation of the reciprocity equation of correlation type, which is used for redatuming, extrapolation, interpolation, and migration. The antialiasing condition can be, surprisingly, more tolerant of a coarser trace sampling compared to the standard antialiasing condition. Numerical results with synthetic vertical seismic profile (VSP) data show that interferometry artifacts are effectively reduced when the antialiasing condition is used as a constraint with interferometric redatuming.


Geophysics ◽  
1999 ◽  
Vol 64 (5) ◽  
pp. 1630-1636 ◽  
Author(s):  
Ayon K. Dey ◽  
Larry R. Lines

In seismic exploration, statistical wavelet estimation and deconvolution are standard tools. Both of these processes assume randomness in the seismic reflectivity sequence. The validity of this assumption is examined by using well‐log synthetic seismograms and by using a procedure for evaluating the resulting deconvolutions. With real data, we compare our wavelet estimations with the in‐situ recording of the wavelet from a vertical seismic profile (VSP). As a result of our examination of the randomness assumption, we present a fairly simple test that can be used to evaluate the validity of a randomness assumption. From our test of seismic data in Alberta, we conclude that the assumption of reflectivity randomness is less of a problem in deconvolution than other assumptions such as phase and stationarity.


Sign in / Sign up

Export Citation Format

Share Document