Amplitude‐variation‐with‐angle behavior of self‐similar interfaces

Geophysics ◽  
1999 ◽  
Vol 64 (6) ◽  
pp. 1928-1938 ◽  
Author(s):  
Kees Wapenaar

Amplitude‐variation‐with‐angle (AVA) analysis is generally based on the assumption that the medium parameters behave as step functions of the depth coordinate z, at least in a finite region around the interface. However, outliers observed in well logs often behave quite differently from step functions. In this paper, outliers in the acoustic propagation velocity are parameterized by functions of the form [Formula: see text]. The wavelet transform of this function reveals properties similar to those of several outliers in real well logs. Moreover, this function is self‐similar, according to [Formula: see text], for β > 0. Analytical expressions are derived for the acoustic normal incidence reflection and transmission coefficients for this type of velocity function. For oblique incidence, no explicit solutions are available. However, by exploiting the self‐similarity property of the velocity function, it turns out that the acoustic angle‐dependent and frequency‐dependent reflection and transmission coefficients are self‐similar as well. To be more specific, these coefficients appear to be constant along curves described by [Formula: see text], where p is the raypath parameter and ω the angular frequency. The singularity exponent α that is reflected in these curves may prove to be a useful indicator in seismic characterization.

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. C1-C11 ◽  
Author(s):  
Qi Hao ◽  
Alexey Stovas

We have developed an approximate method to derive simple expressions for the reflection coefficients of P- and SV-waves for a thin transversely isotropic layer with a vertical symmetry axis (VTI) embedded in a homogeneous VTI background. The layer thickness is assumed to be much smaller than the wavelengths of P- and SV-waves inside. The exact reflection and transmission coefficients are derived by the propagator matrix method. In the case of normal incidence, the exact reflection and transmission coefficients are expressed in terms of the impedances of vertically propagating P- and S-waves. For subcritical incidence, the approximate reflection coefficients are expressed in terms of the contrast in the VTI parameters between the layer and the background. Numerical examples are designed to analyze the reflection coefficients at normal and oblique incidence and investigate the influence of transverse isotropy on the reflection coefficients. Despite giving numerical errors, the approximate formulas are sufficiently simple to qualitatively analyze the variation of the reflection coefficients with the angle of incidence.


2005 ◽  
Vol 2 (2) ◽  
pp. 35
Author(s):  
Zaiki Awang ◽  
Deepak Kumar Ghodgaonkar ◽  
Noor Hasimah Baba

A contactless and non-destructive microwave method has been developed to characterize silicon semiconductor wafers from reflection and transmission measurements made at normal incidence using MNDT. The measurement system consists of a pair of spot-focusing horn lens antenna, mode transitions, coaxial cables and a vector network analyzer (VNA). In this method, the free-space reflection and transmission coefficients, S11 and S21 are measured for silicon wafers sandwiched between two Teflon plates of 5mm thickness which act as a quarter-wave transformer at mid-band. The actual reflection and transmission coefficients, S11 and S21 of the silicon wafers are then calculated from the measured S11 and S21 using ABCD matrix transformation in which the complex permittivity and thickness of the Teflon plates are known. From the complex permittivity, the resistivity and conductivity can be obtained. Results for p-type and n-type doped silicon wafers are reported in the frequency range of 11 – 12.5 GHz. The dielectric constant of silicon wafer obtained by this method agrees well with that measured in the same frequency range by other conventional methods.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
J. Y. Chen ◽  
H. L. Chen ◽  
E. Pan

Reflection and transmission coefficients of plane waves with oblique incidence to a multilayered system of piezomagnetic and/or piezoelectric materials are investigated in this paper. The general Christoffel equation is derived from the coupled constitutive and balance equations, which is further employed to solve the elastic displacements and electric and magnetic potentials. Based on these solutions, the reflection and transmission coefficients in the corresponding layered structures are subsequently obtained by virtue of the propagator matrix method. Two layered examples are selected to verify and illustrate our solutions. One is the purely elastic layered system composed of aluminum and organic glass materials. The other layered system is composed of the novel magnetoelectroelastic material and the organic glass. Numerical results are presented to demonstrate the variation of the reflection and transmission coefficients with different incident angles, frequencies, and boundary conditions, which could be useful to nondestructive evaluation of this novel material structure based on wave propagations.


Sign in / Sign up

Export Citation Format

Share Document