Response by Arthur E. Barnes to the reply by the authors

Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1947-1947 ◽  
Author(s):  
Arthur E. Barnes

I appreciate the thoughtful and thorough response given by Tygel et al. They point out that even for a single dipping reflector imaged by a single non‐zero offset raypath, pulse distortion caused by “standard processing” (NM0 correction‐CMP sort‐stack‐time migration) and pulse distortion caused by prestack depth migration are not really the same, because the reflecting point is mispositioned in standard processing. Within a CMP gather, this mispositioning increases with offset, giving rise to “CMP smear.” CMP smear degrades the stack, introducing additional pulse distortion. Where i‐t is significant, and where lateral velocity variations or reflection curvature are large, such as for complex geology, the pulse distortion of standard processing can differ greatly from that of prestack depth migration.

Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1944-1946
Author(s):  
M. Tygel ◽  
J. Schleicher ◽  
P. Hubral

We highly appreciate the useful remarks of Dr. Barnes relating our work to well‐known practical seismic processing effects. This is of particular interest as normal‐moveout (NMO) correction and post‐stack time migration are still two very important processing steps. Most exploration geophysicists know about the significance of pulse distortions known as “NM0 stretch” and “frequency shifting due to zero‐offset time migration.” As a result of the discussion of Dr. Barnes, it should now be possible to better appreciate the importance of our very general formulas (27) describing the pulse distortion of seismic reflections from an arbitrarily curved subsurface reflector when subjected to a prestack depth migration in 3‐D laterally inhomogeneous media. This discussion thus relates in particular to such important questions as how to correctly sample signals in the time or depth domain in order to avoid spatial aliasing, or how to stack seismic data without loss of information due to destructive interference of wavelets of different lengths.


Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Xianhuai Zhu ◽  
Burke G. Angstman ◽  
David P. Sixta

Through the use of iterative turning‐ray tomography followed by wave‐equation datuming (or tomo‐datuming) and prestack depth migration, we generate accurate prestack images of seismic data in overthrust areas containing both highly variable near‐surface velocities and rough topography. In tomo‐datuming, we downward continue shot records from the topography to a horizontal datum using velocities estimated from tomography. Turning‐ray tomography often provides a more accurate near‐surface velocity model than that from refraction statics. The main advantage of tomo‐datuming over tomo‐statics (tomography plus static corrections) or refraction statics is that instead of applying a vertical time‐shift to the data, tomo‐datuming propagates the recorded wavefield to the new datum. We find that tomo‐datuming better reconstructs diffractions and reflections, subsequently providing better images after migration. In the datuming process, we use a recursive finite‐difference (FD) scheme to extrapolate wavefield without applying the imaging condition, such that lateral velocity variations can be handled properly and approximations in traveltime calculations associated with the raypath distortions near the surface for migration are avoided. We follow the downward continuation step with a conventional Kirchhoff prestack depth migration. This results in better images than those migrated from the topography using the conventional Kirchhoff method with traveltime calculation in the complicated near surface. Since FD datuming is only applied to the shallow part of the section, its cost is much less than the whole volume FD migration. This is attractive because (1) prestack depth migration usually is used iteratively to build a velocity model, so both efficiency and accuracy are important factors to be considered; and (2) tomo‐datuming can improve the signal‐to‐noise (S/N) ratio of prestack gathers, leading to more accurate migration velocity analysis and better images after depth migration. Case studies with synthetic and field data examples show that tomo‐datuming is especially helpful when strong lateral velocity variations are present below the topography.


Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1942-1944 ◽  
Author(s):  
Arthur E. Barnes

Tygel et al. have written an excellent and rigorous discussion of pulse distortion in seismic reflection data caused by prestack depth migration. Such distortion is easily understood by recognizing that it is more or less the same effect as normal moveout (NMO) stretch combined with frequency shifting due to poststack time migration.


2018 ◽  
Vol 6 (1) ◽  
pp. T1-T13
Author(s):  
Bin Lyu ◽  
Qin Su ◽  
Kurt J. Marfurt

Although the structures associated with overthrust terrains form important targets in many basins, accurately imaging remains challenging. Steep dips and strong lateral velocity variations associated with these complex structures require prestack depth migration instead of simpler time migration. The associated rough topography, coupled with older, more indurated, and thus high-velocity rocks near or outcropping at the surface often lead to seismic data that suffer from severe statics problems, strong head waves, and backscattered energy from the shallow section, giving rise to a low signal-to-noise ratio that increases the difficulties in building an accurate velocity model for subsequent depth migration. We applied a multidomain cascaded noise attenuation workflow to suppress much of the linear noise. Strong lateral velocity variations occur not only at depth but near the surface as well, distorting the reflections and degrading all deeper images. Conventional elevation corrections followed by refraction statics methods fail in these areas due to poor data quality and the absence of a continuous refracting surface. Although a seismically derived tomographic solution provides an improved image, constraining the solution to the near-surface depth-domain interval velocities measured along the surface outcrop data provides further improvement. Although a one-way wave-equation migration algorithm accounts for the strong lateral velocity variations and complicated structures at depth, modifying the algorithm to account for lateral variation in illumination caused by the irregular topography significantly improves the image, preserving the subsurface amplitude variations. We believe that our step-by-step workflow of addressing the data quality, velocity model building, and seismic imaging developed for the Tuha Basin of China can be applied to other overthrust plays in other parts of the world.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. O37-O46
Author(s):  
Mark Roberts

Assumptions made during postprocessing can be as important as those made during migration. Prestack depth migration (PSDM) is often used due to its ability to handle lateral velocity variations and dipping events. However, most postprocessing flows still use a simple 1D “depth-to-time” vertical stretch, violating the very assumptions that led us to use PSDM. Postprocessing workflows based on time-shift depth image gathers allow for postprocessing flows that make no further approximations other than those made in migration. For cases in which time-shift gathers are not computed during migration, they can be approximated by use of the “exploding-reflector” model or through an orthogonal shift and interpolation method.


Geophysics ◽  
1982 ◽  
Vol 47 (6) ◽  
pp. 884-897 ◽  
Author(s):  
Walter S. Lynn ◽  
Jon F. Claerbout

In areas of large lateral variations in velocity, stacking velocities computed on the basis of hyperbolic moveout can differ substantially from the actual root mean square (rms) velocities. This paper addresses the problem of obtaining rms or migration velocities from stacking velocities in such areas. The first‐order difference between the stacking and the vertical rms velocities due to lateral variations in velocity are shown to be related to the second lateral derivative of the rms slowness [Formula: see text]. Approximations leading to this relation are straight raypaths and that the vertical rms slowness to a given interface can be expressed as a second‐order Taylor series expansion in the midpoint direction. Under these approximations, the effect of the first lateral derivative of the slowness on the traveltime is negligible. The linearization of the equation relating the stacking and true velocities results in a set of equations whose inversion is unstable. Stability is achieved, however, by adding a nonphysical fourth derivative term which affects only the higher spatial wavenumbers, those beyond the lateral resolution of the lateral derivative method (LDM). Thus, given the stacking velocities and the zero‐offset traveltime to a given event as a function of midpoint, the LDM provides an estimate of the true vertical rms velocity to that event with a lateral resolution of about two mute zones or cable lengths. The LDM is applicable when lateral variations of velocity greater than 2 percent occur over the mute zone. At variations of 30 percent or greater, the internal assumptions of the LDM begin to break down. Synthetic models designed to test the LDM when the different assumptions are violated show that, in all cases, the results are not seriously affected. A test of the LDM on field data having a lateral velocity variation caused by sea floor topography gives a result which is supported by depth migration.


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1895-1902 ◽  
Author(s):  
Shengwen Jin ◽  
Charles C. Mosher ◽  
Ru‐Shan Wu

The double square root equation for laterally varying media in midpoint‐offset coordinates provides a convenient framework for developing efficient 3‐D prestack wave‐equation depth migrations with screen propagators. Offset‐domain pseudoscreen prestack depth migration downward continues the source and receiver wavefields simultaneously in midpoint‐offset coordinates. Wavefield extrapolation is performed with a wavenumber‐domain phase shift in a constant background medium followed by a phase correction in the space domain that accommodates smooth lateral velocity variations. An extra wide‐angle compensation term is also applied to enhance steep dips in the presence of strong velocity contrasts. The algorithm is implemented using fast Fourier transforms and tri‐diagonal matrix solvers, resulting in a computationally efficient implementation. Combined with the common‐azimuth approximation, 3‐D pseudoscreen migration provides a fast wavefield extrapolation for 3‐D marine streamer data. Migration of the 2‐D Marmousi model shows that offset domain pseudoscreen migration provides a significant improvement over first‐arrival Kirchhoff migration for steeply dipping events in strong contrast heterogeneous media. For the 3‐D SEG‐EAGE C3 Narrow Angle synthetic dataset, image quality from offset‐domain pseudoscreen migration is comparable to shot‐record finite‐difference migration results, but with computation times more than 100 times faster for full aperture imaging of the same data volume.


Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 925-933 ◽  
Author(s):  
Ketil Hokstad ◽  
Rune Mittet

We demonstrate the applicability of the Dirac equation in seismic wavefield extrapolation by presenting a new explicit one‐way prestack depth migration scheme. The method is in principle accurate up to 90° from the vertical, and it tolerates lateral velocity variations. This is achieved by performing the extrapolation step of migration with the Dirac equation, implemented in the space‐frequency domain. The Dirac equation is an exact linearization of the square‐root wave equation and is equivalent to keeping infinitely many terms in a Taylor series or continued‐fraction expansion of the square‐root operator. An important property of the new method is that the local velocity and the spatial derivatives decouple in separate terms within the extrapolation operator. Therefore, we do not need to precompute and store large tables of convolutional extrapolator coefficients depending on velocity. The main drawback of the explicit scheme is that evanescent energy must be removed at each depth step to obtain numerical stability. We have tested two numerical implementations of the migration scheme. In the first implementation, we perform depth stepping using the Taylor series approximation and compute spatial derivatives with high‐order finite difference operators. In the second implementation, we perform depth stepping with the Rapid expansion method and numerical differentiation with the pseudospectral method. The imaging condition is a generalization of Claerbout’s U / D principle. For both implementations, the impulse response is accurate up to 80° from the vertical. Using synthetic data from a simple fault model, we test the depth migration scheme in the presence of lateral velocity variations. The results show that the proposed migration scheme images dipping reflectors and the fault plane in the correct positions.


Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 1118-1127 ◽  
Author(s):  
Dimitri Bevc ◽  
James L. Black ◽  
Gopal Palacharla

We analyze how time migration mispositions events in the presence of lateral velocity variation by examining the impulse response of depth modeling followed by time migration. By examining this impulse response, we lay the groundwork for the development of a remedial migration operator that links time and depth migration. A simple theory by Black and Brzostowski predicted that the response of zero‐offset time migration to a point diffractor in a v(x, z) medium would be a distinctive, cusp‐shaped curve called a plume. We have constructed these plumes by migrating synthetic data using several time‐migration methods. We have also computed the shape of the plumes by two geometrical construction methods. These two geometrical methods compare well and explain the observed migration results. The plume response is strongly influenced by migration velocity. We have studied this dependency by migrating synthetic data with different velocities. The observed velocity dependence is confirmed by geometrical construction. A simple first‐order theory qualitatively explains the behavior of zero‐offset time migration, but a more complete understanding of migration velocity dependence in a v(x, z) medium requires a higher order finite‐offset theory.


Sign in / Sign up

Export Citation Format

Share Document