High resolution travel time tomography

Author(s):  
Yonadav Sudman ◽  
Dan Kosloff
2018 ◽  
Vol 90 (1) ◽  
pp. 229-241 ◽  
Author(s):  
Hailiang Xin ◽  
Haijiang Zhang ◽  
Min Kang ◽  
Rizheng He ◽  
Lei Gao ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael J. Bianco ◽  
Peter Gerstoft ◽  
Kim B. Olsen ◽  
Fan-Chi Lin

Abstract We use a machine learning-based tomography method to obtain high-resolution subsurface geophysical structure in Long Beach, CA, from seismic noise recorded on a “large-N” array with 5204 geophones (~13.5 million travel times). This method, called locally sparse travel time tomography (LST) uses unsupervised machine learning to exploit the dense sampling obtained by ambient noise processing on large arrays. Dense sampling permits the LST method to learn directly from the data a dictionary of local, or small-scale, geophysical features. The features are the small scale patterns of Earth structure most relevant to the given tomographic imaging scenario. Using LST, we obtain a high-resolution 1 Hz Rayleigh wave phase speed map of Long Beach. Among the geophysical features shown in the map, the important Silverado aquifer is well isolated relative to previous surface wave tomography studies. Our results show promise for LST in obtaining detailed geophysical structure in travel time tomography studies.


Solid Earth ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 177-192
Author(s):  
David Marti ◽  
Ignacio Marzan ◽  
Jana Sachsenhausen ◽  
Joaquina Alvarez-Marrón ◽  
Mario Ruiz ◽  
...  

Abstract. A high-resolution seismic tomography survey was acquired to obtain a full 3-D P-wave seismic velocity image in the Záncara river basin (eastern Spain). The study area consists of lutites and gypsum from a Neogene sedimentary sequence. A regular and dense grid of 676 shots and 1200 receivers was used to image a 500 m×500 m area of the shallow subsurface. A 240-channel system and a seismic source, consisting of an accelerated weight drop, were used in the acquisition. Half a million travel-time picks were inverted to provide the 3-D seismic velocity distribution up to 120 m depth. The project also targeted the geometry of the underground structure with emphasis on defining the lithological contacts but also the presence of cavities and fault or fractures. An extensive drilling campaign provided uniquely tight constraints on the lithology; these included core samples and wireline geophysical measurements. The analysis of the well log data enabled the accurate definition of the lithological boundaries and provided an estimate of the seismic velocity ranges associated with each lithology. The final joint interpreted image reveals a wedge-shaped structure consisting of four different lithological units. This study features the necessary key elements to test the travel time tomographic inversion approach for the high-resolution characterization of the shallow subsurface. In this methodological validation test, travel-time tomography demonstrated to be a powerful tool with a relatively high capacity for imaging in detail the lithological contrasts of evaporitic sequences located at very shallow depths, when integrated with additional geological and geophysical data.


2008 ◽  
Vol 94 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Sergey N. Vecherin ◽  
Vladimir E. Ostashev ◽  
Keith D. Wilson

Sign in / Sign up

Export Citation Format

Share Document