Wave-equation reflection traveltime inversion with dynamic warping and full-waveform inversion

Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. R223-R233 ◽  
Author(s):  
Yong Ma ◽  
Dave Hale

In reflection seismology, full-waveform inversion (FWI) can generate high-wavenumber subsurface velocity models but often suffers from an objective function with local minima caused mainly by the absence of low frequencies in seismograms. These local minima cause cycle skipping when the low-wavenumber component in the initial velocity model for FWI is far from the true model. To avoid cycle skipping, we discovered a new wave-equation reflection traveltime inversion (WERTI) to update the low-wavenumber component of the velocity model, while using FWI to only update high-wavenumber details of the model. We implemented the low- and high-wavenumber inversions in an alternating way. In WERTI, we used dynamic image warping (DIW) to estimate the time shifts between recorded data and synthetic data. When compared with correlation-based techniques often used in traveltime estimation, DIW can avoid cycle skipping and estimate the time shifts accurately, even when shifts vary rapidly. Hence, by minimizing traveltime shifts estimated by dynamic warping, WERTI reduces errors in reflection traveltime inversion. Then, conventional FWI uses the low-wavenumber component estimated by WERTI as a new initial model and thereby refines the model with high-wavenumber details. The alternating combination of WERTI and FWI mitigates the velocity-depth ambiguity and can recover subsurface velocities using only high-frequency reflection data.

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. R339-R348 ◽  
Author(s):  
Yunyue Elita Li ◽  
Laurent Demanet

The availability of low-frequency data is an important factor in the success of full-waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data less than 2 or 3 Hz from the field is a challenging and expensive task. We have explored the possibility of synthesizing the low frequencies computationally from high-frequency data and used the resulting prediction of the missing data to seed the frequency sweep of FWI. As a signal-processing problem, bandwidth extension is a very nonlinear and delicate operation. In all but the simplest of scenarios, it can only be expected to lead to plausible recovery of the low frequencies, rather than their accurate reconstruction. Even so, it still requires a high-level interpretation of band-limited seismic records into individual events, each of which can be extrapolated to a lower (or higher) frequency band from the nondispersive nature of the wave-propagation model. We have used the phase-tracking method for the event separation task. The fidelity of the resulting extrapolation method is typically higher in phase than in amplitude. To demonstrate the reliability of bandwidth extension in the context of FWI, we first used the low frequencies in the extrapolated band as data substitute, to create the low-wavenumber background velocity model, and then we switched to recorded data in the available band for the rest of the iterations. The resulting method, extrapolated FWI, demonstrated surprising robustness to the inaccuracies in the extrapolated low-frequency data. With two synthetic examples calibrated so that regular FWI needs to be initialized at 1 Hz to avoid local minima, we have determined that FWI based on an extrapolated [1, 5] Hz band, itself generated from data available in the [5, 15] Hz band, can produce reasonable estimations of the low-wavenumber velocity models.


2021 ◽  
Vol 40 (5) ◽  
pp. 324-334
Author(s):  
Rongxin Huang ◽  
Zhigang Zhang ◽  
Zedong Wu ◽  
Zhiyuan Wei ◽  
Jiawei Mei ◽  
...  

Seismic imaging using full-wavefield data that includes primary reflections, transmitted waves, and their multiples has been the holy grail for generations of geophysicists. To be able to use the full-wavefield data effectively requires a forward-modeling process to generate full-wavefield data, an inversion scheme to minimize the difference between modeled and recorded data, and, more importantly, an accurate velocity model to correctly propagate and collapse energy of different wave modes. All of these elements have been embedded in the framework of full-waveform inversion (FWI) since it was proposed three decades ago. However, for a long time, the application of FWI did not find its way into the domain of full-wavefield imaging, mostly owing to the lack of data sets with good constraints to ensure the convergence of inversion, the required compute power to handle large data sets and extend the inversion frequency to the bandwidth needed for imaging, and, most significantly, stable FWI algorithms that could work with different data types in different geologic settings. Recently, with the advancement of high-performance computing and progress in FWI algorithms at tackling issues such as cycle skipping and amplitude mismatch, FWI has found success using different data types in a variety of geologic settings, providing some of the most accurate velocity models for generating significantly improved migration images. Here, we take a step further to modify the FWI workflow to output the subsurface image or reflectivity directly, potentially eliminating the need to go through the time-consuming conventional seismic imaging process that involves preprocessing, velocity model building, and migration. Compared with a conventional migration image, the reflectivity image directly output from FWI often provides additional structural information with better illumination and higher signal-to-noise ratio naturally as a result of many iterations of least-squares fitting of the full-wavefield data.


2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Katherine Flórez ◽  
Sergio Alberto Abreo Carrillo ◽  
Ana Beatriz Ramírez Silva

Full Waveform Inversion (FWI) schemes are gradually becoming more common in the oil and gas industry, as a new tool for studying complex geological zones, based on their reliability for estimating velocity models. FWI is a non-linear inversion method that iteratively estimates subsurface characteristics such as seismic velocity, starting from an initial velocity model and the preconditioned data acquired. Blended sources have been used in marine seismic acquisitions to reduce acquisition costs, reducing the number of times that the vessel needs to cross the exploration delineation trajectory. When blended or simultaneous without previous de-blending or separation, stage data are used in the reconstruction of the velocity model with the FWI method, and the computational time is reduced. However, blended data implies overlapping single shot-gathers, producing interference that affects the result of seismic approaches, such as FWI or seismic image migration. In this document, an encoding strategy is developed, which reduces the overlap areas within the blended data to improve the final velocity model with the FWI method.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. R463-R474 ◽  
Author(s):  
Guanchao Wang ◽  
Shangxu Wang ◽  
Jianyong Song ◽  
Chunhui Dong ◽  
Mingqiang Zhang

Elastic full-waveform inversion (FWI) updates high-resolution model parameters by minimizing the residuals of multicomponent seismic records between the field and model data. FWI suffers from the potential to converge to local minima and more serious nonlinearity than acoustic FWI mainly due to the absence of low frequencies in seismograms and the extended model domain (P- and S-velocities). Reflection waveform inversion can relax the nonlinearity by relying on the tomographic components, which can be used to update the low-wavenumber components of the model. Hence, we have developed an elastic reflection traveltime inversion (ERTI) approach to update the low-wavenumber component of the velocity models for the P- and S-waves. In our ERTI algorithm, we took the P- and S-wave impedance perturbations as elastic reflectivity to generate reflections and a weighted crosscorrelation as the misfit function. Moreover, considering the higher wavenumbers (lower velocity value) of the S-wave velocity compared with the P-wave case, optimizing the low-wavenumber components for the S-wave velocity is even more crucial in preventing the elastic FWI from converging to local minima. We have evaluated an equivalent decoupled velocity-stress wave equation to ERTI to reduce the coupling effects of different wave modes and to improve the inversion result of ERTI, especially for the S-wave velocity. The subsequent application on the Sigsbee2A model demonstrates that our ERTI method with the decoupled wave equation can efficiently update the low-wavenumber parts of the model and improve the precision of the S-wave velocity.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. A33-A37 ◽  
Author(s):  
Amsalu Y. Anagaw ◽  
Mauricio D. Sacchi

Full-waveform inversion (FWI) can provide accurate estimates of subsurface model parameters. In spite of its success, the application of FWI in areas with high-velocity contrast remains a challenging problem. Quadratic regularization methods are often adopted to stabilize inverse problems. Unfortunately, edges and sharp discontinuities are not adequately preserved by quadratic regularization techniques. Throughout the iterative FWI method, an edge-preserving filter, however, can gently incorporate sharpness into velocity models. For every point in the velocity model, edge-preserving smoothing assigns the average value of the most uniform window neighboring the point. Edge-preserving smoothing generates piecewise-homogeneous images with enhanced contrast at boundaries. We adopt a simultaneous-source frequency-domain FWI, based on quasi-Newton optimization, in conjunction with an edge-preserving smoothing filter to retrieve high-contrast velocity models. The edge-preserving smoothing filter gradually removes the artifacts created by simultaneous-source encoding. We also have developed a simple model update to prevent disrupting the convergence of the optimization algorithm. Finally, we perform tests to examine our algorithm.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. A13-A20 ◽  
Author(s):  
Zhiguang Xue ◽  
Junzhe Sun ◽  
Sergey Fomel ◽  
Tieyuan Zhu

The calculation of the gradient in full-waveform inversion (FWI) usually involves crosscorrelating the forward-propagated source wavefield and the back-propagated data residual wavefield at each time step. In the real earth, propagating waves are typically attenuated due to the viscoelasticity, which results in an attenuated gradient for FWI. Replacing the attenuated true gradient with a [Formula: see text]-compensated gradient can accelerate the convergence rate of the inversion process. We have used a phase-dispersion and an amplitude-loss decoupled constant-[Formula: see text] wave equation to formulate a viscoacoustic FWI. We used this wave equation to generate a [Formula: see text]-compensated gradient, which recovers amplitudes while preserving the correct kinematics. We construct an exact adjoint operator in a discretized form using the low-rank wave extrapolation technique, and we implement the gradient compensation by reversing the sign of the amplitude-loss term in the forward and adjoint operators. This leads to a [Formula: see text]-dependent gradient preconditioning method. Using numerical tests with synthetic data, we demonstrate that the proposed viscoacoustic FWI using a constant-[Formula: see text] wave equation is capable of producing high-quality velocity models, and our [Formula: see text]-compensated gradient accelerates its convergence rate.


2017 ◽  
Vol 5 (3) ◽  
pp. SO21-SO30 ◽  
Author(s):  
Shihang Feng ◽  
Gerard T. Schuster

We have developed a tutorial for skeletonized inversion of pseudo-acoustic anisotropic vertical symmetry axis (VTI) data. We first invert for the anisotropic models using wave-equation traveltime inversion. Here, the skeletonized data are the traveltimes of transmitted and/or reflected arrivals that lead to simpler misfit functions and more robust convergence compared with full-waveform inversion. This provides a good starting model for waveform inversion. The effectiveness of this procedure is illustrated with synthetic data examples and a marine data set recorded in the Gulf of Mexico.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. R55-R61 ◽  
Author(s):  
Tariq Alkhalifah ◽  
Yunseok Choi

In full-waveform inversion (FWI), a gradient-based update of the velocity model requires an initial velocity that produces synthetic data that are within a half-cycle, everywhere, from the field data. Such initial velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, and are not guaranteed to adhere to the FWI requirements for an initial velocity model. As such, we evaluated an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase-based attribute of the wavefield, along with its phase unwrapping characteristics, provided a frequency-dependent traveltime function that was easy to use and quantify, especially compared to conventional phase representation. With a strong Laplace damping of the modeled, potentially low-frequency, data along the time axis, this attribute admitted a first-arrival traveltime that could be compared with picked ones from the observed data, such as in wave equation tomography (WET). As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped. It, thus, provided a single objective function for a natural transition from WET to FWI. A Marmousi example demonstrated the effectiveness of the approach.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. R117-R127 ◽  
Author(s):  
Antoine Guitton ◽  
Gboyega Ayeni ◽  
Esteban Díaz

The waveform inversion problem is inherently ill-posed. Traditionally, regularization schemes are used to address this issue. For waveform inversion, where the model is expected to have many details reflecting the physical properties of the Earth, regularization and data fitting can work in opposite directions: the former smoothing and the latter adding details to the model. We propose constraining estimated velocity fields by reparameterizing the model. This technique, also called model-space preconditioning, is based on directional Laplacian filters: It preserves most of the details of the velocity model while smoothing the solution along known geological dips. Preconditioning also yields faster convergence at early iterations. The Laplacian filters have the property to smooth or kill local planar events according to a local dip field. By construction, these filters can be inverted and used in a preconditioned waveform inversion strategy to yield geologically meaningful models. We illustrate with 2D synthetic and field data examples how preconditioning with nonstationary directional Laplacian filters outperforms traditional waveform inversion when sparse data are inverted and when sharp velocity contrasts are present. Adding geological information with preconditioning could benefit full-waveform inversion of real data whenever irregular geometry, coherent noise and lack of low frequencies are present.


Sign in / Sign up

Export Citation Format

Share Document