3C VSP tomography inversion for subsurface P‐ and S‐wave velocity distribution

Author(s):  
Yingping Li ◽  
Xiaomin Zhao ◽  
Ran Zhou ◽  
David Dushman ◽  
Peter Janak
Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. EN17-EN27 ◽  
Author(s):  
Takeshi Tsuji ◽  
Tor Arne Johansen ◽  
Bent Ole Ruud ◽  
Tatsunori Ikeda ◽  
Toshifumi Matsuoka

To reveal the extent of freezing in subglacial sediments, we estimated S-wave velocity along a glacier using surface-wave analysis. Because the S-wave velocity varies significantly with the degree of freezing of the pore fluid in the sediments, this information is useful for identifying unfrozen zones within subglacial sediments, which again is important for glacier dynamics. We used active-source multichannel seismic data originally acquired for reflection analysis along a glacier at Spitsbergen in the Norwegian Arctic and proposed an effective approach of multichannel analysis of surface waves (MASW) in a glacier environment. Common-midpoint crosscorrelation gathers were used for the MASW to improve lateral resolution because the glacier bed has a rough topology. We used multimode analysis with a genetic algorithm inversion to estimate the S-wave velocity due to the potential existence of a low-velocity layer beneath the glacier ice and the observation of higher modes in the dispersion curves. In the inversion, we included information of ice thickness derived from high-resolution ground-penetrating radar data because a simulation study demonstrated that the ice thickness was necessary to estimate accurate S-wave velocity distribution of deep subglacial sediment. The estimated S-wave velocity distribution along the seismic line indicated that low velocities occurred below the glacier, especially beneath thick ice ([Formula: see text] for ice thicknesses larger than 50 m). Because this velocity was much lower than the velocity in pure ice ([Formula: see text]), the pore fluid was partially melted at the ice–sediment interface. At the shallower subglacial sediments (ice thickness less than 50 m), the S-wave velocity was similar to that of the pure ice, suggesting that shallow subglacial sediments are more frozen than sediments beneath thick ice.


2014 ◽  
Vol 96 ◽  
pp. 353-360
Author(s):  
Ya-Chuan Lai ◽  
Bor-Shouh Huang ◽  
Yu-Chih Huang ◽  
Huajian Yao ◽  
Ruey-Der Hwang ◽  
...  

2011 ◽  
Vol 54 (3) ◽  
pp. 286-298 ◽  
Author(s):  
Xiao-Man ZHANG ◽  
Jia-Fu HU ◽  
Yi-Li HU ◽  
Hai-Yan YANG ◽  
Jia CHEN ◽  
...  

Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Gary Mavko ◽  
Diane Jizba

Seismic velocity dispersionin fluid-saturated rocks appears to be dominated by tow mecahnisms: the large scale mechanism modeled by Biot, and the local flow or squirt mecahnism. The tow mechanisms can be distuinguished by the ratio of P-to S-wave dispersions, or more conbeniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. Our formulation suggests that when local flow denominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Our examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.


2021 ◽  
Author(s):  
Z. Liu ◽  
J. Liu ◽  
Q. Bao ◽  
N. Dong ◽  
L. Shi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document