Seabed property estimation from ambient-noise recordings: Part 2 — Scholte-wave spectral-ratio inversion

Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. U47-U53 ◽  
Author(s):  
Everhard Muyzert

Having knowledge of the near-surface shear-velocity model is useful for various seismic processing methods such as shear-wave static estimation, wavefield separation, and geohazard prediction. I present a new method to derive a 2D near-surface shear-velocity model from ambient-noise recordings made at the seafloor. The method relies on inverting horizontal- and vertical-amplitude spectra of Scholte waves propagating in the seafloor. I compare the commonly used horizontal-over-vertical spectral ratio with three alternative spectral-ratio definitions through modeling. The modeling shows that the vertical-over-total spectral ratio has some favorable properties for inversion. I describe a nonlinear inversion method for the vertical-to-total spectral ratio of the Scholte waves and apply it to an ambient-noise data set recorded by an ocean-bottom-cable (OBC) system. A 1D near-surface shear-velocity model is derived through a joint inversion of the spectral-ratio and phase-velocity data. A 2D shear-velocity model is obtained through a local inversion of the spectral ratios averaged over small groups of receivers and shows evidence for lateral heterogeneity. The newly developed method for deriving near-surface shear-velocity distribution by inverting the Scholte-wave spectral ratio measured from seabed noise provides great opportunities for estimating the shallow-seabed shear velocity in deep water. Another benefit of the method is that, with the OBC system, no additional hardware is needed; only additional recording time is required. In this case, half an hour is sufficient.

Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. U21-U26 ◽  
Author(s):  
Everhard Muyzert

The ability to derive a near-surface shear-velocity profile from ambient-noise records is useful for seismic applications such as shear-wave statics estimation and geohazard prediction. Measurements of seafloor compliance and Scholte wave velocity and amplitude are all related to the near-surface shear-velocity profile. I analyzed a data set of [Formula: see text] of continuous noise records recorded by an ocean bottom cable deployed in [Formula: see text] deep water for seafloor compliance and Scholte waves. I failed to observe seafloor compliance because of limitations in the record length. I have detected Scholte waves on the inline and vertical component geophones and Love waves on the crossline component using [Formula: see text] spectra. Both the Scholte and Love wave phase-velocities can be explained by a simple 1D isotropic near-surface model. The Scholte waves may have been excited by acoustic energy from the recording vessel, while no satisfactory excitation mechanism has been found for the Love waves.


2021 ◽  
Vol 11 (23) ◽  
pp. 11249
Author(s):  
Ioannis Koutsoupakis ◽  
Yiannis Tsompanakis ◽  
Pantelis Soupios ◽  
Panagiotis Kirmizakis ◽  
SanLinn Kaka ◽  
...  

This study develops a comprehensive seismic risk model for the city of Chania, in Greece, which is located ina highly seismic-prone region due to the occurrenceof moderate to large earthquakes because of the nearby major subduction zone between African and Eurasian tectonic plates. The main aim is to reduce the seismic risk for the study area by incorporating the spatial distribution of the near-surface shear wave velocity model and the soil classification, along with all possible seismic sources, taking into account historical events. The study incorporates and correlates various ground motion scenarios and geological fault zones as well as information on existing buildings to develop a seismic risk model using QuakeIST software, and then the seismic hazard and a realistic prediction of resulting future adverse effects are assessed. The developed model can assist the municipal authorities of Chania to be prepared for potential seismic events, as well as city planners and decisionmakers, who can use the model as an effective decision-making tool to identify the seismic vulnerability of the city buildings and infrastructure. Thus, this study enables the implementation of an appropriate and viable earthquake-related hazards strategy to mitigate damage and losses in future earthquakes.


2019 ◽  
Vol 24 (4) ◽  
pp. 641-652
Author(s):  
Feng Liang ◽  
Zhihui Wang ◽  
Hailong Li ◽  
Kai Liu ◽  
Tao Wang

Urban geophysics ups the ante in the world of applied geophysics, which requires innovative thinking and seemingly off-the-wall approaches, if for no other reason than the settings. Ambient-noise-tomography (ANT) can play a pivotal role in yielding subsurfa2ce information in urban areas, which is capable of dealing with challenges related to these scenarios ( e.g., human activities and low signal-to-noise ratio). In this study, the ANT was conducted to investigate the near-surface shear-velocity structure in the surrounding area of the Baotu Spring Park in downtown Jinan, Shandong Province, China. Quiet clear Rayleigh waves have been obtained by the cross-correlation, which indicates that strong human activities, such as moving vehicles and municipal engineering constructions, can produce approximately isotropic distribution of noise sources for high-frequency signals. The direct surface-wave tomographic method with period-dependent ray-tracing was used to invert all surface-wave dispersion data in the period band 0.2-1.5 s simultaneously for 3D variations of shear-velocity (Vs) structure. Our results show a good correspondence to the geological features with thinner Quaternary sediments, the geological structural characteristic of the limestone surrounded by the igneous which has the highest velocity than that of the limestone in the study area, and several concealed faults of which specific location has been detected at depth. The results demonstrate that it is possible to successfully use ANT with high-frequency signal in an urban environment provided a detailed planning and execution is implemented.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. EN49-EN61
Author(s):  
Yudi Pan ◽  
Lingli Gao

Full-waveform inversion (FWI) of surface waves is becoming increasingly popular among shallow-seismic methods. Due to a huge amount of data and the high nonlinearity of the objective function, FWI usually requires heavy computational costs and may converge toward a local minimum. To mitigate these problems, we have reformulated FWI under a multiobjective framework and adopted a random objective waveform inversion (ROWI) method for surface-wave characterization. Three different measure functions were used, whereas the combination of one measure function with one shot independently provided one of the [Formula: see text] objective functions ([Formula: see text] is the total number of shots). We have randomly chose and optimized one objective function at each iteration. We performed a synthetic test to compare the performance of the ROWI and conventional FWI approaches, which showed that the convergence of ROWI is faster and more robust compared with conventional FWI approaches. We also applied ROWI to a field data set acquired in Rheinstetten, Germany. ROWI successfully reconstructed the main geologic feature, a refilled trench, in the final result. The comparison between the ROWI result and a migrated ground-penetrating radar profile further proved the effectiveness of ROWI in reconstructing the near-surface S-wave velocity model. We also ran the same field example by using a poor initial model. In this case, conventional FWI failed whereas ROWI still reconstructed the subsurface model to a fairly good level, which highlighted the relatively low dependency of ROWI on the initial model.


Geophysics ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. SI139-SI150 ◽  
Author(s):  
Andrey Bakulin ◽  
Rodney Calvert

We present a way to image through complex overburden. The method uses surface shots with downhole receivers placed below the most complex part of the troublesome overburden. No knowledge of the velocity model between shots and receivers is required. The method uses time-reversal logic to create a new downward-continued data set with virtual sources (VS's) at the geophone locations. Time reversal focuses energy that passes through the overburden into useful primary energy for the VS. In contrast to physical acoustics, our time reversal is done on a computer, utilizing conventional acquisition with surface shots and downhole geophones. With this approach, we can image below extremely complex (realistic) overburden — in fact, the more complex the better. We recast the data to those with sources where we actually know and can control the waveform that has a downward-radiation pattern that may also be controlled, and is reproducible for 4D even if the near-surface changes or the shooting geometry is altered slightly. To illustrate the method, we apply the VS technique to a synthetic, elastic example with extreme heterogeneity, where conventional approaches fail to image the data. A 4D field-data example shows that the VS method (VSM) enables sensitive reservoir monitoring below a complex, time-variant near surface that is not achievable with surface 4D seismic or conventional 4D vertical seismic profiling (VSP).


2020 ◽  
Author(s):  
Ehsan Qorbani ◽  
Irene Bianchi ◽  
Petr Kolínský ◽  
Dimitri Zigone ◽  
Götz Bokelmann

<p>In this study, we show results from ambient noise tomography at the KTB drilling site, Germany. The Continental Deep Drilling Project, or ‘Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland’ (KTB) is at the northwestern edge of the Bohemian Massif and is located on the Variscan belt of Europe. During the KTB project crustal rocks have been drilled down to 9 km depth and several active seismic studies have been performed in the surrounding. The KTB area therefore presents an ideal test area for testing and verifying the potential resolution of passive seismic techniques. The aim of this study is to present a new shear-wave velocity model of the area while comparing the results to the previous velocity models and hints for anisotropy depicted by former passive and active seismological studies. We use a unique data set composed of two years of continuous data recorded at nine 3-component temporary stations installed from July 2012 to July 2014 located on top and vicinity of the drilling site. Moreover, we included a number of permanent stations in the region in order to improve the path coverage and density. Cross correlations of ambient noise are computed between the station pairs using all possible combination of three-component data. Dispersion curves of surface waves are extracted and are then inverted to obtain group velocity maps. We present here a new velocity model of the upper crust of the area, which shows velocity variations at short scales that correlate well with geology in the region.</p>


2020 ◽  
Vol 33 (5-6) ◽  
pp. 232-238
Author(s):  
Yuting Zhang ◽  
◽  
Hongyi Li ◽  
Yanzhen Li ◽  
Zhijie Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document