Random objective waveform inversion of surface waves

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. EN49-EN61
Author(s):  
Yudi Pan ◽  
Lingli Gao

Full-waveform inversion (FWI) of surface waves is becoming increasingly popular among shallow-seismic methods. Due to a huge amount of data and the high nonlinearity of the objective function, FWI usually requires heavy computational costs and may converge toward a local minimum. To mitigate these problems, we have reformulated FWI under a multiobjective framework and adopted a random objective waveform inversion (ROWI) method for surface-wave characterization. Three different measure functions were used, whereas the combination of one measure function with one shot independently provided one of the [Formula: see text] objective functions ([Formula: see text] is the total number of shots). We have randomly chose and optimized one objective function at each iteration. We performed a synthetic test to compare the performance of the ROWI and conventional FWI approaches, which showed that the convergence of ROWI is faster and more robust compared with conventional FWI approaches. We also applied ROWI to a field data set acquired in Rheinstetten, Germany. ROWI successfully reconstructed the main geologic feature, a refilled trench, in the final result. The comparison between the ROWI result and a migrated ground-penetrating radar profile further proved the effectiveness of ROWI in reconstructing the near-surface S-wave velocity model. We also ran the same field example by using a poor initial model. In this case, conventional FWI failed whereas ROWI still reconstructed the subsurface model to a fairly good level, which highlighted the relatively low dependency of ROWI on the initial model.

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Fuchun Gao ◽  
Jeroen Tromp

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R411-R427 ◽  
Author(s):  
Gang Yao ◽  
Nuno V. da Silva ◽  
Michael Warner ◽  
Di Wu ◽  
Chenhao Yang

Full-waveform inversion (FWI) is a promising technique for recovering the earth models for exploration geophysics and global seismology. FWI is generally formulated as the minimization of an objective function, defined as the L2-norm of the data residuals. The nonconvex nature of this objective function is one of the main obstacles for the successful application of FWI. A key manifestation of this nonconvexity is cycle skipping, which happens if the predicted data are more than half a cycle away from the recorded data. We have developed the concept of intermediate data for tackling cycle skipping. This intermediate data set is created to sit between predicted and recorded data, and it is less than half a cycle away from the predicted data. Inverting the intermediate data rather than the cycle-skipped recorded data can then circumvent cycle skipping. We applied this concept to invert cycle-skipped first arrivals. First, we picked up the first breaks of the predicted data and the recorded data. Second, we linearly scaled down the time difference between the two first breaks of each shot into a series of time shifts, the maximum of which was less than half a cycle, for each trace in this shot. Third, we moved the predicted data with the corresponding time shifts to create the intermediate data. Finally, we inverted the intermediate data rather than the recorded data. Because the intermediate data are not cycle-skipped and contain the traveltime information of the recorded data, FWI with intermediate data updates the background velocity model in the correct direction. Thus, it produces a background velocity model accurate enough for carrying out conventional FWI to rebuild the intermediate- and short-wavelength components of the velocity model. Our numerical examples using synthetic data validate the intermediate-data concept for tackling cycle skipping and demonstrate its effectiveness for the application to first arrivals.


2019 ◽  
Vol 219 (3) ◽  
pp. 1970-1988 ◽  
Author(s):  
Weiguang He ◽  
Romain Brossier ◽  
Ludovic Métivier ◽  
René-Édouard Plessix

SUMMARY Land seismic multiparameter full waveform inversion in anisotropic media is challenging because of high medium contrasts and surface waves. With a data-residual least-squares objective function, the surface wave energy usually masks the body waves and the gradient of the objective function exhibits high values in the very shallow depths preventing from recovering the deeper part of the earth model parameters. The optimal transport objective function, coupled with a Gaussian time-windowing strategy, allows to overcome this issue by more focusing on phase shifts and by balancing the contributions of the different events in the adjoint-source and the gradients. We first illustrate the advantages of the optimal transport function with respect to the least-squares one, with two realistic examples. We then discuss a vertical transverse isotropic (VTI) example starting from a quasi 1-D isotropic initial model. Despite some cycle-skipping issues in the initial model, the inversion based on the windowed optimal transport approach converges. Both the near-surface complexities and the variations at depth are recovered.


2019 ◽  
Vol 218 (3) ◽  
pp. 1873-1891 ◽  
Author(s):  
Farbod Khosro Anjom ◽  
Daniela Teodor ◽  
Cesare Comina ◽  
Romain Brossier ◽  
Jean Virieux ◽  
...  

SUMMARY The analysis of surface wave dispersion curves (DCs) is widely used for near-surface S-wave velocity (VS) reconstruction. However, a comprehensive characterization of the near-surface requires also the estimation of P-wave velocity (VP). We focus on the estimation of both VS and VP models from surface waves using a direct data transform approach. We estimate a relationship between the wavelength of the fundamental mode of surface waves and the investigation depth and we use it to directly transform the DCs into VS and VP models in laterally varying sites. We apply the workflow to a real data set acquired on a known test site. The accuracy of such reconstruction is validated by a waveform comparison between field data and synthetic data obtained by performing elastic numerical simulations on the estimated VP and VS models. The uncertainties on the estimated velocity models are also computed.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. R31-R42 ◽  
Author(s):  
Changsoo Shin ◽  
Dong-Joo Min

Although waveform inversion has been studied extensively since its beginning [Formula: see text] ago, applications to seismic field data have been limited, and most of those applications have been for global-seismology- or engineering-seismology-scale problems, not for exploration-scale data. As an alternative to classical waveform inversion, we propose the use of a new, objective function constructed by taking the logarithm of wavefields, allowing consideration of three types of objective function, namely, amplitude only, phase only, or both. In our wave form inversion, we estimate the source signature as well as the velocity structure by including functions of amplitudes and phases of the source signature in the objective function. We compute the steepest-descent directions by using a matrix formalism derived from a frequency-domain, finite-element/finite-difference modeling technique. Our numerical algorithms are similar to those of reverse-time migration and waveform inversion based on the adjoint state of the wave equation. In order to demonstrate the practical applicability of our algorithm, we use a synthetic data set from the Marmousi model and seismic data collected from the Korean continental shelf. For noise-free synthetic data, the velocity structure produced by our inversion algorithm is closer to the true velocity structure than that obtained with conventional waveform inversion. When random noise is added, the inverted velocity model is also close to the true Marmousi model, but when frequencies below [Formula: see text] are removed from the data, the velocity structure is not as good as those for the noise-free and noisy data. For field data, we compare the time-domain synthetic seismograms generated for the velocity model inverted by our algorithm with real seismograms and find that the results show that our inversion algorithm reveals short-period features of the subsurface. Although we use wrapped phases in our examples, we still obtain reasonable results. We expect that if we were to use correctly unwrapped phases in the inversion algorithm, we would obtain better results.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. R89-R98 ◽  
Author(s):  
Tariq Alkhalifah

A model of the earth can be described using a Fourier basis represented by its wavenumber content. In full-waveform inversion (FWI), the wavenumber description of the model is natural because our Born-approximation-based velocity updates are made up of wavefields. Our objective in FWI is to access all the model wavenumbers available in our limited aperture and bandwidth recorded data that are not yet accurately present in the initial velocity model. To invert for those model wavenumbers, we need to locate their imprint in the data. Thus, I review the relation between the model wavenumber buildup and the inversion process. Specifically, I emphasize a focus on the model wavenumber components and identified their individual influence on the data. Missing the energy for a single vertical low-model wavenumber from the residual between the true Marmousi model and some initial linearly increasing velocity model produced a worse least-squares fit to the data than the initial model itself, in which all the residual model wavenumbers were missing. This stern realization validated the importance of wavenumber continuation, specifically starting from the low-model wavenumbers, to higher (resolution) wavenumbers, especially those attained in an order dictated by the scattering angle filter. A numerical Marmousi example determined the important role that the scattering angle filter played in managing the wavenumber continuation from low to high. An application on the SEG2014 blind test data set with frequencies lower than 7 Hz muted out further validated the versatility of the scattering angle filtering.


2016 ◽  
Vol 4 (4) ◽  
pp. T627-T635
Author(s):  
Yikang Zheng ◽  
Wei Zhang ◽  
Yibo Wang ◽  
Qingfeng Xue ◽  
Xu Chang

Full-waveform inversion (FWI) is used to estimate the near-surface velocity field by minimizing the difference between synthetic and observed data iteratively. We apply this method to a data set collected on land. A multiscale strategy is used to overcome the local minima problem and the cycle-skipping phenomenon. Another obstacle in this application is the slow convergence rate. The inverse Hessian can enhance the poorly blurred gradient in FWI, but obtaining the full Hessian matrix needs intensive computation cost; thus, we have developed an efficient method aimed at the pseudo-Hessian in the time domain. The gradient in our FWI workflow is preconditioned with the obtained pseudo-Hessian and a synthetic example verifies its effectiveness in reducing computational cost. We then apply the workflow on the land data set, and the inverted velocity model is better resolved compared with traveltime tomography. The image and angle gathers we get from the inversion result indicate more detailed information of subsurface structures, which will contribute to the subsequent seismic interpretation.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R201-R211 ◽  
Author(s):  
Zedong Wu ◽  
Tariq Alkhalifah

Standard full-waveform inversion (FWI) attempts to minimize the difference between observed and modeled data. However, this difference is obviously sensitive to the amplitude of observed data, which leads to difficulties because we often do not process data in absolute units and because we usually do not consider density variations, elastic effects, or more complicated physical phenomena. Global correlation methods can remove the amplitude influence for each trace and thus can mitigate such difficulties in some sense. However, this approach still suffers from the well-known cycle-skipping problem, leading to a flat objective function when observed and modeled data are not correlated well enough. We optimize based on maximizing not only the zero-lag global correlation but also time or space lags of the modeled data to circumvent the half-cycle limit. We use a weighting function that is maximum value at zero lag and decays away from zero lag to balance the role of the lags. The resulting objective function is less sensitive to the choice of the maximum lag allowed and has a wider region of convergence compared with standard FWI. Furthermore, we develop a selective function, which passes to the gradient calculation only positive correlations, to mitigate cycle skipping. Finally, the resulting algorithm has better convergence behavior than conventional methods. Application to the Marmousi model indicates that this method converges starting with a linearly increasing velocity model, even with data free of frequencies less than 3.5 Hz. Application to the SEG2014 data set demonstrates the potential of our method.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B95-B105 ◽  
Author(s):  
Yao Wang ◽  
Richard D. Miller ◽  
Shelby L. Peterie ◽  
Steven D. Sloan ◽  
Mark L. Moran ◽  
...  

We have applied time domain 2D full-waveform inversion (FWI) to detect a known 10 m deep wood-framed tunnel at Yuma Proving Ground, Arizona. The acquired seismic data consist of a series of 2D survey lines that are perpendicular to the long axis of the tunnel. With the use of an initial model estimated from surface wave methods, a void-detection-oriented FWI workflow was applied. A straightforward [Formula: see text] quotient masking method was used to reduce the inversion artifacts and improve confidence in identifying anomalies that possess a high [Formula: see text] ratio. Using near-surface FWI, [Formula: see text] and [Formula: see text] velocity profiles were obtained with void anomalies that are easily interpreted. The inverted velocity profiles depict the tunnel as a low-velocity anomaly at the correct location and depth. A comparison of the observed and simulated waveforms demonstrates the reliability of inverted models. Because the known tunnel has a uniform shape and for our purposes an infinite length, we apply 1D interpolation to the inverted [Formula: see text] profiles to generate a pseudo 3D (2.5D) volume. Based on this research, we conclude the following: (1) FWI is effective in near-surface tunnel detection when high resolution is necessary. (2) Surface-wave methods can provide accurate initial S-wave velocity [Formula: see text] models for near-surface 2D FWI.


2018 ◽  
Vol 6 (4) ◽  
pp. SM27-SM37 ◽  
Author(s):  
Jing Li ◽  
Kai Lu ◽  
Sherif Hanafy ◽  
Gerard Schuster

Two robust imaging technologies are reviewed that provide subsurface geologic information in challenging environments. The first one is wave-equation dispersion (WD) inversion of surface waves and guided waves (GW) for the shear-velocity (S-wave) and compressional-velocity (P-wave) models, respectively. The other method is traveltime inversion for the velocity model, in which supervirtual refraction interferometry (SVI) is used to enhance the signal-to-noise ratio of far-offset refractions. We have determined the benefits and liabilities of both methods with synthetic seismograms and field data. The benefits of WD are that (1) there is no layered-medium assumption, as there is in conventional inversion of dispersion curves. This means that 2D or 3D velocity models can be accurately estimated from data recorded by seismic surveys over rugged topography, and (2) WD mostly avoids getting stuck in local minima. The liability is that WD for surface waves is almost as expensive as full-waveform inversion (FWI) and, for Rayleigh waves, only recovers the S-velocity distribution to a depth no deeper than approximately 1/2 to 1/3 wavelength of the lowest-frequency surface wave. The limitation for GW is that, for now, it can estimate the P-velocity model by inverting the dispersion curves from GW propagating in near-surface low-velocity zones. Also, WD often requires user intervention to pick reliable dispersion curves. For SVI, the offset of usable refractions can be more than doubled, so that traveltime tomography can be used to estimate a much deeper model of the P-velocity distribution. This can provide a more effective starting velocity model for FWI. The liability is that SVI assumes head-wave first arrivals, not those from strong diving waves.


Sign in / Sign up

Export Citation Format

Share Document