ground motion scenarios
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 11 (23) ◽  
pp. 11249
Author(s):  
Ioannis Koutsoupakis ◽  
Yiannis Tsompanakis ◽  
Pantelis Soupios ◽  
Panagiotis Kirmizakis ◽  
SanLinn Kaka ◽  
...  

This study develops a comprehensive seismic risk model for the city of Chania, in Greece, which is located ina highly seismic-prone region due to the occurrenceof moderate to large earthquakes because of the nearby major subduction zone between African and Eurasian tectonic plates. The main aim is to reduce the seismic risk for the study area by incorporating the spatial distribution of the near-surface shear wave velocity model and the soil classification, along with all possible seismic sources, taking into account historical events. The study incorporates and correlates various ground motion scenarios and geological fault zones as well as information on existing buildings to develop a seismic risk model using QuakeIST software, and then the seismic hazard and a realistic prediction of resulting future adverse effects are assessed. The developed model can assist the municipal authorities of Chania to be prepared for potential seismic events, as well as city planners and decisionmakers, who can use the model as an effective decision-making tool to identify the seismic vulnerability of the city buildings and infrastructure. Thus, this study enables the implementation of an appropriate and viable earthquake-related hazards strategy to mitigate damage and losses in future earthquakes.


Author(s):  
Erika Schiappapietra ◽  
Chiara Smerzini

AbstractThis paper investigates the spatial correlation of response spectral accelerations from a set of broadband physics-based ground motion simulations generated for the Norcia (Central Italy) area by means of the SPEED software. We produce several ground-motion scenarios by varying either the slip distribution or the hypocentral location as well as the magnitude to systematically explore the impact of such physical parameters on spatial correlations. We extend our analysis to other ground-motion components (vertical, fault-parallel, fault-normal) in addition to the more classic geometric mean to highlight possible ground-motion directionality and therefore identify specific spatial correlation features. Our analyses provide useful insights on the role of slip heterogeneities as well as the relative position between hypocentre and slip asperities on the spatial correlation. Indeed, we found a significant variability in terms of both range and sill among the considered case studies, suggesting that the spatial correlation is not only period-dependent, but also scenario-dependent. Finally, our results reveal that the isotropy assumption may represent an oversimplification especially in the near-field and thus it may be unsuitable for assessing the seismic risk of spatially-distributed infrastructures and portfolios of buildings.


Author(s):  
Luigi Lombardo ◽  
Hakan Tanyas

AbstractGround motion scenarios exists for most of the seismically active areas around the globe. They essentially correspond to shaking level maps at given earthquake return times which are used as reference for the likely areas under threat from future ground displacements. Being landslides in seismically actively regions closely controlled by the ground motion, one would expect that landslide susceptibility maps should change as the ground motion patterns change in space and time. However, so far, statistically-based landslide susceptibility assessments have primarily been used as time-invariant.In other words, the vast majority of the statistical models does not include the temporal effect of the main trigger in future landslide scenarios. In this work, we present an approach aimed at filling this gap, bridging current practices in the seismological community to those in the geomorphological and statistical ones. More specifically, we select an earthquake-induced landslide inventory corresponding to the 1994 Northridge earthquake and build a Bayesian Generalized Additive Model of the binomial family, featuring common morphometric and thematic covariates as well as the Peak Ground Acceleration generated by the Northridge earthquake. Once each model component has been estimated, we have run 1000 simulations for each of the 217 possible ground motion scenarios for the study area. From each batch of 1000 simulations, we have estimated the mean and 95% Credible Interval to represent the mean susceptibility pattern under a specific earthquake scenario, together with its uncertainty level. Because each earthquake scenario has a specific return time, our simulations allow to incorporate the temporal dimension into any susceptibility model, therefore driving the results toward the definition of landslide hazard. Ultimately, we also share our results in vector format – a .mif file that can be easily converted into a common shapefile –. There, we report the mean (and uncertainty) susceptibility of each 1000 simulation batch for each of the 217 scenarios.


2021 ◽  
Vol 9 ◽  
Author(s):  
Carolina Canora ◽  
Susana P. Vilanova ◽  
Yolanda De Pro-Diáz ◽  
Pedro Pina ◽  
Sandra Heleno

The Lower Tagus Valley Fault, Portugal, has long been associated with the damaging earthquakes that affected the Greater Lisbon Area in historical times. These include a poorly documented earthquake that occurred in 1344, the relatively well-documented 1531 earthquake, and the most recent M6.0 1909 earthquake. In this work, we use a 0.5 m resolution LiDAR-based digital elevation model and a 0.5 cm resolution digital surface model based on UAV photogrammetry to accurately locate the fault scarps in the northernmost portion of the western fault strand and to select sites to perform paleoseimolological investigations. The paleoseismological and geochronological analysis performed in the Alviela trench site document the fault activity in the last 3000 years, including two earthquakes during historical times. We performed ground motion scenarios for 20 km, 40 km, and 60 km ruptures including the trench site. The ground motion fields obtained for the 40 km and 60 km ruptures are in agreement with most macroseismic intensity data available for the 1531 earthquake, implying a magnitude in the range M6.8–7.4. However, the degree of deformation preserved in the trench suggests a value closer to the lower magnitude bound. The intensity level observed in Lisbon in 1531 (IX) is lower than the modeled intensities for all considered scenarios and could be related to a particularly high level of vulnerability of the building stock.


Author(s):  
Dimcho Solakov ◽  
Stela Simeonova ◽  
Plamena Raykova ◽  
Boyko Rangelov ◽  
Constantin Ionescu

Author(s):  
N. Agea-Medina ◽  
S. Molina-Palacios ◽  
D. H. Lang ◽  
I. Ferreiro-Prieto ◽  
J. A. Huesca ◽  
...  

2015 ◽  
Vol 14 (7) ◽  
pp. 1917-1943 ◽  
Author(s):  
Horst Langer ◽  
Giuseppina Tusa ◽  
Luciano Scarfì ◽  
Raffaele Azzaro

2013 ◽  
Vol 13 (3) ◽  
pp. 679-688 ◽  
Author(s):  
F. Abdi ◽  
N. Mirzaei ◽  
E. Shabani

Abstract. This study presents the results of probabilistic seismic hazard (PSH) deaggregation for 5%-damped 0.2 and 1.0 s spectral accelerations, corresponding to mean return periods (MRPs) of 50, and 475 yr for Tehran city. The aim of this paper is to quantify the dominant events that have the most contribution on ground-motion exceedance from the above mentioned hazard levels. The scenario earthquakes are characterized by bins of magnitude (M), source-to-site distance (R), and epsilon (ε). The results reveal that for Tehran city, the hazard is mainly controlled by local seismicity. Generally, as the spectral acceleration period increase, the contribution of larger and more distant scenario earthquakes to the overall seismic hazard increase.


Sign in / Sign up

Export Citation Format

Share Document