Temporal behavior of microseismmicity as a characteristic of local pore pressure change.

Author(s):  
S.B. Turuntaev ◽  
E. V. Zenchenko ◽  
E.I. Eremeeva
2021 ◽  
Vol 9 ◽  
Author(s):  
Keisuke Ariyoshi ◽  
Toshinori Kimura ◽  
Yasumasa Miyazawa ◽  
Sergey Varlamov ◽  
Takeshi Iinuma ◽  
...  

In our recent study, we detected the pore pressure change due to the slow slip event (SSE) in March 2020 at the two borehole stations (C0002 and C0010), where the other borehole (C0006) close to the Nankai Trough seems not because of instrumental drift for the reference pressure on the seafloor to remove non-crustal deformation such as tidal and oceanic fluctuations. To overcome this problem, we use the seafloor pressure gauges of cabled network Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) stations nearby boreholes instead of the reference by introducing time lag between them. We confirm that the time lag is explained from superposition of theoretical tide modes. By applying this method to the pore pressure during the SSE, we find pore pressure change at C0006 about 0.6 hPa. We also investigate the impact of seafloor pressure due to ocean fluctuation on the basis of ocean modeling, which suggests that the decrease of effective normal stress from the onset to the termination of the SSE is explained by Kuroshio meander and may promote updip slip migration, and that the increase of effective normal stress for the short-term ocean fluctuation may terminate the SSE as observed in the Hikurangi subduction zone.


2021 ◽  
Author(s):  
Kuan-Fu Feng ◽  
Hsin-Hua Huang ◽  
Ya-Ju Hsu ◽  
Yih-Min Wu

<p>Ambient noise interferometry is a promising technique for studying crustal behaviors, providing continuous measurements of seismic velocity changes (dv/v) in relation to physical processes in the crust over time. In addition to the tectonic-driven dv/v changes, dv/v is also known to be affected by environmental factors through rainfall-induced pore-pressure changes, air pressure loading changes, thermoelastic effects, and so forth. In this study, benefiting from the long-term continuous data of Broadband Array in Taiwan for Seismology (BATS) that has been operated since 1994, we analyze continuous seismic data from 1998 to 2019 by applying single-station cross-component (SC) technique to investigate the temporal variations of crust on seismic velocity. We process the continuous waveforms of BATS stations, construct the empirical Green’s functions, and compute daily seismic velocity changes by the stretching technique in a frequency band of 0.1 to 0.9 Hz. We observe co-seismic velocity drops associated with the inland moderate earthquakes. Furthermore, clear seasonal cycles, with a period of near one-year, are also revealed at most stations, but with different characteristics. Systematic spectral and time-series analyses with the weather data are conducted and show that the rainfall-induced pore-pressure change is likely the main cause to the seasonal variations with high correlations. The strong site-dependency of these seasonal variations also precludes air pressure and temperature which varies smoothly in space from being dominant sources and suggests spatially-varying complex hydro-mechanical interaction across the orogenic belt in Taiwan.</p>


2006 ◽  
Vol 62 (2) ◽  
pp. 387-404
Author(s):  
Yoshinobu HOSHINO ◽  
Yoshihisa UCHITA ◽  
Kunio WATANABE ◽  
Kenji FUJII

2021 ◽  
Vol 8 ◽  
Author(s):  
Keisuke Ariyoshi ◽  
Takeshi Iinuma ◽  
Masaru Nakano ◽  
Toshinori Kimura ◽  
Eiichiro Araki ◽  
...  

We have detected an event of pore pressure change (hereafter, we refer it to “pore pressure event”) from borehole stations in real time in March 2020, owing to the network developed by connecting three borehole stations to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) observatories near the Nankai Trough. During the pore pressure event, shallow very low-frequency events (sVLFEs) were also detected from the broadband seismometers of DONET, which suggests that the sVLFE migrated toward updip region along the subduction plate boundary. Since one of the pore pressure sensors have been suffered from unrecognized noise after the replacement of sensors due to the connecting operation, we assume four cases for crustal deformation component of the pore pressure change. Comparing the four possible cases for crustal deformation component of the volumetric strain change at C0010 with the observed sVLFE migration and the characteristic of previous SSEs, we conclude that the pore pressure event can be explained from SSE migration toward the updip region which triggered sVLFE in the passage. This feature is similar to the previous SSE in 2015 and could be distinguished from the unrecognized noise on the basis of t-test. Our new finding is that the SSE in 2020 did not reach very shallow part of the plate interface because the pore pressure changes at a borehole station installed in 2018 close to the trough axis was not significant. In the present study, we estimated the amount, onset and termination time of the pore pressure change for the SSE in 2020 by fitting regression lines for the time history. Since the change amount and duration time were smaller and shorter than the SSE in 2015, respectively, we also conclude that the SSE in 2020 had smaller magnitude that the SSE in 2015. These results would give us a clue to monitor crustal deformation along the Nankai Trough directly from other seafloor observations.


2021 ◽  
Author(s):  
Saumik Dana ◽  
Birendra Jha

The burgeoning need to sequester anthropogenic CO_2 for climate mitigation and the need for energy sustenance leading upto enhanced geothermal energy production has made it incredibly critical to study potential earthquakes due to fluid activity in the subsurface. These earthquakes result from reactivation of faults in the subsurface due to pore pressure perturbations. In this work, we provide a framework to model fault slip due to pore pressure change leading upto quantifying the earthquake magnitude.


Sign in / Sign up

Export Citation Format

Share Document