On the Macro Velocity Model in Full‐Waveform Inversion applied to Time‐Lapse Seismic Reservoir Monitoring

Author(s):  
Mark C.H. Lam
Author(s):  
Severine Pannetier Lescoffit ◽  
Marianne Houbiers ◽  
Cris Henstock ◽  
Erik Hicks ◽  
Karl-Magnus Nilsen ◽  
...  

2016 ◽  
Vol 35 (10) ◽  
pp. 850-858 ◽  
Author(s):  
Erik Hicks ◽  
Henning Hoeber ◽  
Marianne Houbiers ◽  
Séverine Pannetier Lescoffit ◽  
Andrew Ratcliffe ◽  
...  

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R45-R60
Author(s):  
Mrinal Sinha ◽  
Gerard T. Schuster

Velocity errors in the shallow part of the velocity model can lead to erroneous estimates of the full-waveform inversion (FWI) tomogram. If the location and topography of a reflector are known, then such a reflector can be used as a reference reflector to update the underlying velocity model. Reflections corresponding to this reference reflector are windowed in the data space. Windowed reference reflections are then crosscorrelated with reflections from deeper interfaces, which leads to partial cancellation of static errors caused by the overburden above the reference interface. Interferometric FWI (IFWI) is then used to invert the tomogram in the target region, by minimizing the normalized waveform misfit between the observed and predicted crosscorrelograms. Results with synthetic and field data with static errors above the reference interface indicate that an accurate tomogram can be inverted in areas lying within several wavelengths of the reference interface. IFWI can also be applied to synthetic time-lapse data to mitigate the nonrepeatability errors caused by time-varying overburden variations. The synthetic- and field-data examples demonstrate that IFWI can provide accurate tomograms when the near surface is ridden with velocity errors.


Author(s):  
Ehsan Jamali Hondori ◽  
Chen Guo ◽  
Hitoshi Mikada ◽  
Jin-Oh Park

AbstractFull-waveform inversion (FWI) of limited-offset marine seismic data is a challenging task due to the lack of refracted energy and diving waves from the shallow sediments, which are fundamentally required to update the long-wavelength background velocity model in a tomographic fashion. When these events are absent, a reliable initial velocity model is necessary to ensure that the observed and simulated waveforms kinematically fit within an error of less than half a wavelength to protect the FWI iterative local optimization scheme from cycle skipping. We use a migration-based velocity analysis (MVA) method, including a combination of the layer-stripping approach and iterations of Kirchhoff prestack depth migration (KPSDM), to build an accurate initial velocity model for the FWI application on 2D seismic data with a maximum offset of 5.8 km. The data are acquired in the Japan Trench subduction zone, and we focus on the area where the shallow sediments overlying a highly reflective basement on top of the Cretaceous erosional unconformity are severely faulted and deformed. Despite the limited offsets available in the seismic data, our carefully designed workflow for data preconditioning, initial model building, and waveform inversion provides a velocity model that could improve the depth images down to almost 3.5 km. We present several quality control measures to assess the reliability of the resulting FWI model, including ray path illuminations, sensitivity kernels, reverse time migration (RTM) images, and KPSDM common image gathers. A direct comparison between the FWI and MVA velocity profiles reveals a sharp boundary at the Cretaceous basement interface, a feature that could not be observed in the MVA velocity model. The normal faults caused by the basal erosion of the upper plate in the study area reach the seafloor with evident subsidence of the shallow strata, implying that the faults are active.


2021 ◽  
Vol 110 ◽  
pp. 103417
Author(s):  
Dong Li ◽  
Suping Peng ◽  
Xingguo Huang ◽  
Yinling Guo ◽  
Yongxu Lu ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-77
Author(s):  
Danyelle da Silva ◽  
Edwin Fagua Duarte ◽  
Wagner Almeida ◽  
Mauro Ferreira ◽  
Francisco Alirio Moura ◽  
...  

We have designed a target-oriented methodology to perform Full Waveform Inversion using a frequency-domain wave propagator based on the so-called Patched Green’s Function (PGF) technique. Originally developed in condensed matter physics to describe electronic waves in materials, the PGF technique is easily adaptable to the case of wave propagation in a spatially variable media in general. By dividing the entire computational domain into two sections, namely the target area and the outside target area, we calculate the Green Functions related to each section separately. The calculations related to the section outside the target are performed only once at the beginning of inversion, whereas the calculations in the target area are performed repeatedly for each iteration of the inversion process. With the Green Functions of the separate areas, we calculate the Green Functions of the two systems patched together through the application of a Recursive Dyson equation. By performing 2D and time-lapse experiments on the Marmousi model and a Brazilian Pre-salt velocity model, we demonstrate that the target-oriented PGF reduces the computational time of the inversion without compromising accuracy. In fact, when compared with conventional FWI results, the PGF-based calculations are identical but done in a fraction of the time.


Sign in / Sign up

Export Citation Format

Share Document