scholarly journals Interferometric full-waveform inversion

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R45-R60
Author(s):  
Mrinal Sinha ◽  
Gerard T. Schuster

Velocity errors in the shallow part of the velocity model can lead to erroneous estimates of the full-waveform inversion (FWI) tomogram. If the location and topography of a reflector are known, then such a reflector can be used as a reference reflector to update the underlying velocity model. Reflections corresponding to this reference reflector are windowed in the data space. Windowed reference reflections are then crosscorrelated with reflections from deeper interfaces, which leads to partial cancellation of static errors caused by the overburden above the reference interface. Interferometric FWI (IFWI) is then used to invert the tomogram in the target region, by minimizing the normalized waveform misfit between the observed and predicted crosscorrelograms. Results with synthetic and field data with static errors above the reference interface indicate that an accurate tomogram can be inverted in areas lying within several wavelengths of the reference interface. IFWI can also be applied to synthetic time-lapse data to mitigate the nonrepeatability errors caused by time-varying overburden variations. The synthetic- and field-data examples demonstrate that IFWI can provide accurate tomograms when the near surface is ridden with velocity errors.

2018 ◽  
Vol 58 (2) ◽  
pp. 884
Author(s):  
Lianping Zhang ◽  
Haryo Trihutomo ◽  
Yuelian Gong ◽  
Bee Jik Lim ◽  
Alexander Karvelas

The Schlumberger Multiclient Exmouth 3D survey was acquired over the Exmouth sub-basin, North West Shelf Australia and covers 12 600 km2. One of the primary objectives of this survey was to produce a wide coverage of high quality imaging with advanced processing technology within an agreed turnaround time. The complexity of the overburden was one of the imaging challenges that impacted the structuration and image quality at the reservoir level. Unlike traditional full-waveform inversion (FWI) workflow, here, FWI was introduced early in the workflow in parallel with acquisition and preprocessing to produce a reliable near surface velocity model from a smooth starting model. FWI derived an accurate and detailed near surface model, which subsequently benefitted the common image point (CIP) tomography model updates through to the deeper intervals. The objective was to complete the FWI model update for the overburden concurrently with the demultiple stages hence reflection time CIP tomography could start with a reasonably good velocity model upon completion of the demultiple process.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R223-R241 ◽  
Author(s):  
Florian Faucher ◽  
Guy Chavent ◽  
Hélène Barucq ◽  
Henri Calandra

The determination of background velocity by full-waveform inversion (FWI) is known to be hampered by the local minima of the data misfit caused by the phase shifts associated with background perturbations. Attraction basins for the underlying optimization problems can be computed around any nominal velocity model, and they guarantee that the misfit functional has only one (global) minimum. The attraction basins are further associated with tolerable error levels representing the maximal allowed distance between the (observed) data and the simulations (i.e., the acceptable noise level). The estimates are defined a priori, and they only require the computation of (possibly many) the first- and second-order directional derivatives of the (model to synthetic) forward map. The geometry of the search direction and the frequency influence the size of the attraction basins, and the complex frequency can be used to enlarge the basins. The size of the attraction basins for the perturbation of background velocities in classic FWI (global model parameterization) and the data-space reflectivity reformulation (migration-based traveltime [MBTT]) are compared: The MBTT reformulation substantially increases the size of the attraction basins (by a factor of 4–15). Practically, this reformulation compensates for the lack of low-frequency data. Our analysis provides guidelines for a successful implementation of the MBTT reformulation.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. R59-R80 ◽  
Author(s):  
Michael Warner ◽  
Andrew Ratcliffe ◽  
Tenice Nangoo ◽  
Joanna Morgan ◽  
Adrian Umpleby ◽  
...  

We have developed and implemented a robust and practical scheme for anisotropic 3D acoustic full-waveform inversion (FWI). We demonstrate this scheme on a field data set, applying it to a 4C ocean-bottom survey over the Tommeliten Alpha field in the North Sea. This shallow-water data set provides good azimuthal coverage to offsets of 7 km, with reduced coverage to a maximum offset of about 11 km. The reservoir lies at the crest of a high-velocity antiformal chalk section, overlain by about 3000 m of clastics within which a low-velocity gas cloud produces a seismic obscured area. We inverted only the hydrophone data, and we retained free-surface multiples and ghosts within the field data. We invert in six narrow frequency bands, in the range 3 to 6.5 Hz. At each iteration, we selected only a subset of sources, using a different subset at each iteration; this strategy is more efficient than inverting all the data every iteration. Our starting velocity model was obtained using standard PSDM model building including anisotropic reflection tomography, and contained epsilon values as high as 20%. The final FWI velocity model shows a network of shallow high-velocity channels that match similar features in the reflection data. Deeper in the section, the FWI velocity model reveals a sharper and more-intense low-velocity region associated with the gas cloud in which low-velocity fingers match the location of gas-filled faults visible in the reflection data. The resulting velocity model provides a better match to well logs, and better flattens common-image gathers, than does the starting model. Reverse-time migration, using the FWI velocity model, provides significant uplift to the migrated image, simplifying the planform of the reservoir section at depth. The workflows, inversion strategy, and algorithms that we have used have broad application to invert a wide-range of analogous data sets.


Geophysics ◽  
2021 ◽  
pp. 1-91
Author(s):  
Daniela Teodor ◽  
Cesare Cesare ◽  
Farbod Khosro Anjom ◽  
Romain Brossier ◽  
Valentina Socco Laura ◽  
...  

Elastic full-waveform inversion (FWI) is a powerful tool for high-resolution subsurface multi-parameter characterization. However, 3D FWI applied to land data for near-surface applications is particularly challenging, since the seismograms are dominated by highly energetic, dispersive, and complex-scattered surface waves (SWs). In these conditions, a successful deterministic FWI scheme requires an accurate initial model. This study, primarily focused on field data analysis for 3D applications, aims at enhancing the resolution in the imaging of complex shallow targets, by integrating devoted SW analysis techniques with a 3D spectral-element-based elastic FWI. From dispersion curves (DCs), extracted from seismic data recorded over a sharp-interface shallow target, we built different initial S-wave (VS) and P-wave (VP) velocity models (laterally homogeneous and laterally variable), using a specific data-transform. Starting from these models, we carry out 3D FWI tests on synthetic and field data, using a relatively straightforward inversion scheme. The field data processing before FWI consists of bandpass filtering and muting of noisy traces. During FWI, a weighting function is applied to the far-offset traces. We test both 2D and 3D acquisition layouts, with different positions of the sources and variable offsets. The 3D FWI workflow enriched the overall content of the initial models, allowing a reliable reconstruction of the shallow target, especially when using laterally variable initial models. Moreover, a 3D acquisition layout guaranteed a better reconstruction of the target’s shape and lateral extension. In addition, the integration of model-oriented (preliminary monoparametric FWI) and data-oriented (time-windowing) strategies into the main optimization scheme has granted further improvement of the FWI results.


2016 ◽  
Vol 4 (4) ◽  
pp. T627-T635
Author(s):  
Yikang Zheng ◽  
Wei Zhang ◽  
Yibo Wang ◽  
Qingfeng Xue ◽  
Xu Chang

Full-waveform inversion (FWI) is used to estimate the near-surface velocity field by minimizing the difference between synthetic and observed data iteratively. We apply this method to a data set collected on land. A multiscale strategy is used to overcome the local minima problem and the cycle-skipping phenomenon. Another obstacle in this application is the slow convergence rate. The inverse Hessian can enhance the poorly blurred gradient in FWI, but obtaining the full Hessian matrix needs intensive computation cost; thus, we have developed an efficient method aimed at the pseudo-Hessian in the time domain. The gradient in our FWI workflow is preconditioned with the obtained pseudo-Hessian and a synthetic example verifies its effectiveness in reducing computational cost. We then apply the workflow on the land data set, and the inverted velocity model is better resolved compared with traveltime tomography. The image and angle gathers we get from the inversion result indicate more detailed information of subsurface structures, which will contribute to the subsequent seismic interpretation.


Geophysics ◽  
2021 ◽  
pp. 1-85
Author(s):  
Ludovic Métivier ◽  
Romain Brossier

A receiver-extension strategy is presented as an alternative to recently promoted source-extension strategies, in the framework of high resolution seismic imaging by full waveform inversion. This receiver-extension strategy is directly applicable in time-domain full waveform inversion, and unlike source-extension methods it incurs negligible extra computational cost. After connections between difference source-extension strategies are reviewed, the receiver-extension method is introduced and analyzed for single-arrival data. The method results in a misfit function convex with respect to the velocity model in this context. The method is then applied to three exploration scale synthetic case studies representative of different geological environment, based on: the Marmousi model, the BP 2004 salt model, and the Valhall model. In all three cases the receiver-extension strategy makes it possible to start full waveform inversion with crude initial models, and reconstruct meaningful subsurface velocity models. The good performance of the method even considering inaccurate amplitude prediction due to noise, imperfect modeling, and source wavelet estimation, bodes well for field data applications.


2020 ◽  
Vol 222 (1) ◽  
pp. 610-627 ◽  
Author(s):  
Peng Guo ◽  
Gerhard Visser ◽  
Erdinc Saygin

SUMMARY Seismic full waveform inversion (FWI) is a state-of-the-art technique for estimating subsurface physical models from recorded seismic waveform, but its application requires care because of high non-linearity and non-uniqueness. The final outcome of global convergence from conventional FWI using local gradient information relies on an informative starting model. Bayesian inference using Markov chain Monte Carlo (MCMC) sampling is able to remove such dependence, by a direct extensive search of the model space. We use a Bayesian trans-dimensional MCMC seismic FWI method with a parsimonious dipping layer parametrization, to invert for subsurface velocity models from pre-stack seismic shot gathers that contain mainly reflections. For the synthetic study, we use a simple four-layer model and a modified Marmousi model. A recently collected multichannel off-shore seismic reflection data set, from the Lord Howe Rise (LHR) in the east of Australia, is used for the field data test. The trans-dimensional FWI method is able to provide model ensembles for describing posterior distribution, when the dipping-layer model assumption satisfies the observed data. The model assumption requires narrow models, thus only near-offset data to be used. We use model stitching with lateral and depth constraints to create larger 2-D models from many adjacent overlapping submodel inversions. The inverted 2-D velocity model from the Bayesian inference can then be used as a starting model for the gradient-based FWI, from which we are able to obtain high-resolution subsurface velocity models, as demonstrated using the synthetic data. However, lacking far-offset data limits the constraints for the low-wavenumber part of the velocity model, making the inversion highly non-unique. We found it challenging to apply the dipping-layer based Bayesian FWI to the field data. The approximations in the source wavelet and forward modelling physics increase the multimodality of the posterior distribution; the sampled velocity models clearly show the trade-off between interface depth and velocity. Numerical examples using the synthetic and field data indicate that trans-dimensional FWI has the potential for inverting earth models from reflection waveform. However, a sparse model parametrization and far offset constraints are required, especially for field application.


Sign in / Sign up

Export Citation Format

Share Document