Target-oriented inversion using the Patched Green′s function method

Geophysics ◽  
2021 ◽  
pp. 1-77
Author(s):  
Danyelle da Silva ◽  
Edwin Fagua Duarte ◽  
Wagner Almeida ◽  
Mauro Ferreira ◽  
Francisco Alirio Moura ◽  
...  

We have designed a target-oriented methodology to perform Full Waveform Inversion using a frequency-domain wave propagator based on the so-called Patched Green’s Function (PGF) technique. Originally developed in condensed matter physics to describe electronic waves in materials, the PGF technique is easily adaptable to the case of wave propagation in a spatially variable media in general. By dividing the entire computational domain into two sections, namely the target area and the outside target area, we calculate the Green Functions related to each section separately. The calculations related to the section outside the target are performed only once at the beginning of inversion, whereas the calculations in the target area are performed repeatedly for each iteration of the inversion process. With the Green Functions of the separate areas, we calculate the Green Functions of the two systems patched together through the application of a Recursive Dyson equation. By performing 2D and time-lapse experiments on the Marmousi model and a Brazilian Pre-salt velocity model, we demonstrate that the target-oriented PGF reduces the computational time of the inversion without compromising accuracy. In fact, when compared with conventional FWI results, the PGF-based calculations are identical but done in a fraction of the time.

2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Katherine Flórez ◽  
Sergio Alberto Abreo Carrillo ◽  
Ana Beatriz Ramírez Silva

Full Waveform Inversion (FWI) schemes are gradually becoming more common in the oil and gas industry, as a new tool for studying complex geological zones, based on their reliability for estimating velocity models. FWI is a non-linear inversion method that iteratively estimates subsurface characteristics such as seismic velocity, starting from an initial velocity model and the preconditioned data acquired. Blended sources have been used in marine seismic acquisitions to reduce acquisition costs, reducing the number of times that the vessel needs to cross the exploration delineation trajectory. When blended or simultaneous without previous de-blending or separation, stage data are used in the reconstruction of the velocity model with the FWI method, and the computational time is reduced. However, blended data implies overlapping single shot-gathers, producing interference that affects the result of seismic approaches, such as FWI or seismic image migration. In this document, an encoding strategy is developed, which reduces the overlap areas within the blended data to improve the final velocity model with the FWI method.


Geophysics ◽  
2021 ◽  
pp. 1-55
Author(s):  
Shihao Yuan ◽  
Nobuaki Fuji ◽  
Satish C. Singh

Seismic full waveform inversion is a powerful method to estimate the elastic properties of the subsurface. To mitigate the non-linearity and cycle-skipping problems, in a hierarchical manner, one inverts first low-frequency contents to determine long- and medium-wavelength structures and then increases the frequency contents to obtain detailed information. However, the inversion of higher frequencies can be computationally very expensive, especially when the target of interest, such as oil/gas reservoirs and axial melt lens, is at a great depth, far away from source and receiver arrays. To address this problem, we present a localized full waveform inversion algorithm where iterative modeling is performed locally, allowing us to extend inversions for higher frequencies with little computation effort. Our method is particularly useful for time-lapse seismic, where the changes in elastic parameters are local due to fluid extraction and injection in the subsurface. In our method, both sources and receivers are extrapolated to a region close to the target area, allowing forward modeling and inversion to be performed locally after low-frequency full-model inversion for the background model, which by nature only represents long- to medium-wavelength features. Numerical tests show that the inversion of low-frequency data for the overburden is sufficient to provide an accurate high-frequency estimation of elastic parameters of the target region.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R45-R60
Author(s):  
Mrinal Sinha ◽  
Gerard T. Schuster

Velocity errors in the shallow part of the velocity model can lead to erroneous estimates of the full-waveform inversion (FWI) tomogram. If the location and topography of a reflector are known, then such a reflector can be used as a reference reflector to update the underlying velocity model. Reflections corresponding to this reference reflector are windowed in the data space. Windowed reference reflections are then crosscorrelated with reflections from deeper interfaces, which leads to partial cancellation of static errors caused by the overburden above the reference interface. Interferometric FWI (IFWI) is then used to invert the tomogram in the target region, by minimizing the normalized waveform misfit between the observed and predicted crosscorrelograms. Results with synthetic and field data with static errors above the reference interface indicate that an accurate tomogram can be inverted in areas lying within several wavelengths of the reference interface. IFWI can also be applied to synthetic time-lapse data to mitigate the nonrepeatability errors caused by time-varying overburden variations. The synthetic- and field-data examples demonstrate that IFWI can provide accurate tomograms when the near surface is ridden with velocity errors.


Author(s):  
Ehsan Jamali Hondori ◽  
Chen Guo ◽  
Hitoshi Mikada ◽  
Jin-Oh Park

AbstractFull-waveform inversion (FWI) of limited-offset marine seismic data is a challenging task due to the lack of refracted energy and diving waves from the shallow sediments, which are fundamentally required to update the long-wavelength background velocity model in a tomographic fashion. When these events are absent, a reliable initial velocity model is necessary to ensure that the observed and simulated waveforms kinematically fit within an error of less than half a wavelength to protect the FWI iterative local optimization scheme from cycle skipping. We use a migration-based velocity analysis (MVA) method, including a combination of the layer-stripping approach and iterations of Kirchhoff prestack depth migration (KPSDM), to build an accurate initial velocity model for the FWI application on 2D seismic data with a maximum offset of 5.8 km. The data are acquired in the Japan Trench subduction zone, and we focus on the area where the shallow sediments overlying a highly reflective basement on top of the Cretaceous erosional unconformity are severely faulted and deformed. Despite the limited offsets available in the seismic data, our carefully designed workflow for data preconditioning, initial model building, and waveform inversion provides a velocity model that could improve the depth images down to almost 3.5 km. We present several quality control measures to assess the reliability of the resulting FWI model, including ray path illuminations, sensitivity kernels, reverse time migration (RTM) images, and KPSDM common image gathers. A direct comparison between the FWI and MVA velocity profiles reveals a sharp boundary at the Cretaceous basement interface, a feature that could not be observed in the MVA velocity model. The normal faults caused by the basal erosion of the upper plate in the study area reach the seafloor with evident subsidence of the shallow strata, implying that the faults are active.


2021 ◽  
Vol 110 ◽  
pp. 103417
Author(s):  
Dong Li ◽  
Suping Peng ◽  
Xingguo Huang ◽  
Yinling Guo ◽  
Yongxu Lu ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-77
Author(s):  
diego domenzain ◽  
John Bradford ◽  
Jodi Mead

We exploit the different but complementary data sensitivities of ground penetrating radar (GPR) and electrical resistivity (ER) by applying a multi-physics, multi-parameter, simultaneous 2.5D joint inversion without invoking petrophysical relationships. Our method joins full-waveform inversion (FWI) GPR with adjoint derived ER sensitivities on the same computational domain. We incorporate a stable source estimation routine into the FWI-GPR.We apply our method in a controlled alluvial aquifer using only surface acquired data. The site exhibits a shallow groundwater boundary and unconsolidated heterogeneous alluvial deposits. We compare our recovered parameters to individual FWI-GPR and ER results, and to log measurements of capacitive conductivity and neutron-derived porosity. Our joint inversion provides a more representative depiction of subsurface structures because it incorporates multiple intrinsic parameters, and it is therefore superior to an interpretation based on log data, FWI-GPR, or ER alone.


2017 ◽  
Author(s):  
Musa Maharramov ◽  
Ganglin Chen ◽  
Partha S. Routh ◽  
Anatoly I. Baumstein ◽  
Sunwoong Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document