Imaging permafrost velocity structure using high resolution 3D seismic tomography

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. B187-B198 ◽  
Author(s):  
Kumar Ramachandran ◽  
Gilles Bellefleur ◽  
Tom Brent ◽  
Michael Riedel ◽  
Scott Dallimore

A 3D seismic survey (Mallik 3D), covering [Formula: see text] in the Mackenzie Delta area of Canada’s north, was conducted by industry in 2002. Numerous lakes and marine inundation create a complex near-surface structure in the permafrost terrain. Much of the near subsurface remains frozen but significant melt zones exist particularly from perennially unfrozen water bodies. This results in an irregular distribution of permafrost ice creating a complex pattern of low and high frequency near-surface velocity variations which induce significant traveltime distortions in surface seismic data. A high resolution 3D traveltime tomography study was employed to map the permafrost velocity structure utilizing first-arrival traveltimes picked from 3D seismic shot records. Approximately 900,000 traveltime picks from 3167 shots were used in the inversion. Tomographic inversion of the first-arrival traveltimes resulted in a smooth velocity model for the upper 200 m of the subsurface. Ray coverage in the model is excellent down to 200 m providing effective control for estimating velocities through tomographic inversion. Resolution tests conducted through horizontal and vertical checkerboard tests confirm the robustness of the velocity model in detailing small scale velocity variations. Well velocities were used to validate tomographic velocities. The tomographic velocities do not show systematic correlation with well velocities. The velocity model clearly images the permafrost velocity structure in lateral and vertical directions. It is inferred from the velocity model that the permafrost structure in the near subsurface is discontinuous. Extensions of surface water bodies in depth, characterized by low P-wave velocities, are well imaged by the velocity model. Deep lakes with unfrozen water, inferred from the tomographic velocity model, correlate with areas of strong amplitude blanking and frequency attenuation observed in processed reflection seismic stack sections.

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. H67-H78 ◽  
Author(s):  
Colin A. Zelt ◽  
Aron Azaria ◽  
Alan Levander

We have applied traveltime tomography to 3D seismic refraction data collected at Hill Air Force Base, Utah, in an approximately [Formula: see text] area over a shallow [Formula: see text] groundwater contamination site. The purpose of this study is to test the ability of 3D first-arrival-time data to characterize the shallow environment and aid remediation efforts. The aquifer is bounded below by a clay aquiclude, into which a paleochannel has been incised and acts as a trap for dense nonaqueous phase liquid (DNAPL) contaminants. A regularized nonlinear tomographic approach was applied to [Formula: see text] first-arrival traveltimes to obtain the smoothest minimum-structure 3D velocity model. The resulting velocity model contains a velocity increase from less than [Formula: see text] in the upper [Formula: see text]. The model also contains a north-south-trending low-velocity feature interpreted to be the paleochannel, based on more than 100 wells in the area. Checkerboard tests show [Formula: see text] lateral resolution throughout most of the model. The preferred final model was chosen after a systematic test of the free parameters involved in the tomographic approach, including the starting model. The final velocity model compares favorably with a 3D poststack depth migration and 2D waveform inversion of coincident reflection data. While the long-wavelength features of the model reveal the primary target of the survey, the paleochannel, the velocity model is likely a very smooth characterization of the true velocity structure, particularly in the vertical direction, given the size of the first Fresnel zone for these data.


Geophysics ◽  
2004 ◽  
Vol 69 (4) ◽  
pp. 1082-1090 ◽  
Author(s):  
Björn Bergman ◽  
Ari Tryggvason ◽  
Christopher Juhlin

A major obstacle in tomographic inversion is near‐surface velocity variations. Such shallow velocity variations need to be known and correctly accounted for to obtain images of deeper structures with high resolution and quality. Bedrock cover in many areas consists of unconsolidated sediments and glacial till. To handle the problems associated with this cover, we present a tomographic method that solves for the 3D velocity structure and receiver static corrections simultaneously. We test the method on first‐arrival picks from deep seismic reflection data acquired in the mid‐ late to 1980s in the Siljan Ring area, central Sweden. To use this data set successfully, one needs to handle a number of problems, including time‐varying, near‐surface velocities from data recorded in winter and summer, several sources and receivers within each inversion cell, varying thickness of the cover layer in each inversion cell, and complex 3D geology. Simultaneous inversion for static corrections and velocity produces a much better image than standard tomography without statics. The velocity model from the simultaneous inversion is superior to the velocity model produced using refraction statics obtained from standard reflection seismic processing prior to inversion. Best results using the simultaneous inversion are obtained when the initial top velocity layer is set to the near‐surface bedrock velocity rather than the velocity of the cover. The resulting static calculations may, in the future, be compared to refraction static corrections in standard reflection seismic processing. The preferred final model shows a good correlation with the mapped geology and the airborne magneticmap.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. U31-U43
Author(s):  
Yihao Wang ◽  
Jie Zhang

In near-surface velocity structure estimation, first-arrival traveltime tomography tends to produce a smooth velocity model. If the shallow structures include a weathering layer over high-velocity bedrock, first-arrival traveltime tomography may fail to recover the sharp interface. However, with the same traveltime data, refraction traveltime migration proves to be an effective tool for accurately mapping the refractor. The approach downward continues the refraction traveltime curves and produces an image (position) of the refractor for a given overburden velocity model. We first assess the validity of the refraction traveltime migration method and analyze its uncertainties with a simple model. We then develop a multilayer refraction traveltime migration method and apply the migration image to constrain traveltime tomographic inversion by imposing discontinuities at the refraction interfaces in model regularization. In each subsequent iteration, the shape of the migrated refractors and the velocity model are simultaneously updated. The synthetic tests indicate that the joint inversion method performs better than the conventional first-arrival traveltime tomography method with Tikhonov regularization and the delay-time method in reconstructing near-surface models with high-velocity contrasts. In application to field data, this method produces a more accurately resolved velocity model, which improves the quality of common midpoint stacking by making long-wavelength static corrections.


Author(s):  
Xinwei Huang ◽  
Zhenbo Guo ◽  
Huawei Zhou ◽  
Yubo Yue

Abstract Under the assumption of invariant ray path in a weakly dissipative (high quality factor Q) subsurface medium, a tomographic inversion approach composed of two cascading applications of first arrival traveltime and Q tomography is proposed for compensating amplitude loss caused by near-surface anomalies, such as unconsolidated soils or the overburden gas cloud. To improve the computational efficiency, these two related tomography methods were adopted with an adjoint-state technique. First, arrival traveltime tomography will be performed to provide an inverted velocity model as one of the inputs for the following first arrival Q tomography. Then, the synthetic first break generated by the inverted velocity model will be used as a stable guidance of accessing the scopes of first arrival waveforms in the time domain where the potential attenuated time information is contained. The attenuated time will be estimated through a logarithmic spectral ratio linear regression corresponding to frequency-dependent propagation responses of different wave types. All these estimated attenuated times will be applied with reference signals to generate synthetic attenuated seismic data in the time domain, and their discrepancies with real data will be evaluated using similarity coefficients. The ones with larger values will be selected as optimal attenuated time inputs for the following Q tomographic inversion. Examples of both synthetic and field data reveal the feasibility and potential of this method.


Author(s):  
Gleb S. Chernyshov ◽  
◽  
Anton A. Duchkov ◽  
Aleksander A. Nikitin ◽  
Ivan Yu. Kulakov ◽  
...  

The problem of tomographic inversion is non–unique and requires regularization to solve it in a stable manner. It is highly non–trivial to choose between various regularization approaches or tune the regularization parameters themselves. We study the influence of one particular regularization parameter on the resolution and accuracy the tomographic inversion for the near–surface model building. We propose another regularization parameter, which allows to increase the accuracy of model building.


Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. G1-G15 ◽  
Author(s):  
Sawasdee Yordkayhun ◽  
Ari Tryggvason ◽  
Ben Norden ◽  
Christopher Juhlin ◽  
Björn Bergman

A 3D reflection seismic survey was performed in 2005 at the Ketzin carbon dioxide [Formula: see text] pilot geological-storage site (the [Formula: see text] project) near Berlin, Germany, to image the geological structure of the site to depths of about [Formula: see text]. Because of the acquisition geometry, frequency limitations of the source, and artefacts of the data processing, detailed structures shallower than about [Formula: see text] were unclear. To obtain structural images of the shallow subsurface, we applied 3D traveltime tomography to data near the top of the Ketzin anticline, where faulting is present. Understanding the shallow subsurface structure is important for long-term monitoring aspects of the project after [Formula: see text] has been injected into a saline aquifer at about [Formula: see text] depth. We used a 3D traveltime tomography algorithm based on a combination ofsolving for 3D velocity structure and static corrections in the inversion process to account for artefacts in the velocity structure because of smearing effects from the unconsolidated cover. The resulting velocity model shows low velocities of [Formula: see text] in the uppermost shallow subsurface of the study area. The velocity reaches about [Formula: see text] at a depth of [Formula: see text]. This coincides approximately with the boundary between Quaternary units, which contain the near-surface freshwater reservoir and the Tertiary clay aquitard. Correlation of tomographic images with a similarity attribute slice at [Formula: see text] (about [Formula: see text] depth) indicates that at least one east-west striking fault zone observed in the reflection data might extend into the Tertiary unit. The more detailed images of the shallow subsurface from this study provided valuable information on this potentially risky area.


Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Xianhuai Zhu ◽  
Burke G. Angstman ◽  
David P. Sixta

Through the use of iterative turning‐ray tomography followed by wave‐equation datuming (or tomo‐datuming) and prestack depth migration, we generate accurate prestack images of seismic data in overthrust areas containing both highly variable near‐surface velocities and rough topography. In tomo‐datuming, we downward continue shot records from the topography to a horizontal datum using velocities estimated from tomography. Turning‐ray tomography often provides a more accurate near‐surface velocity model than that from refraction statics. The main advantage of tomo‐datuming over tomo‐statics (tomography plus static corrections) or refraction statics is that instead of applying a vertical time‐shift to the data, tomo‐datuming propagates the recorded wavefield to the new datum. We find that tomo‐datuming better reconstructs diffractions and reflections, subsequently providing better images after migration. In the datuming process, we use a recursive finite‐difference (FD) scheme to extrapolate wavefield without applying the imaging condition, such that lateral velocity variations can be handled properly and approximations in traveltime calculations associated with the raypath distortions near the surface for migration are avoided. We follow the downward continuation step with a conventional Kirchhoff prestack depth migration. This results in better images than those migrated from the topography using the conventional Kirchhoff method with traveltime calculation in the complicated near surface. Since FD datuming is only applied to the shallow part of the section, its cost is much less than the whole volume FD migration. This is attractive because (1) prestack depth migration usually is used iteratively to build a velocity model, so both efficiency and accuracy are important factors to be considered; and (2) tomo‐datuming can improve the signal‐to‐noise (S/N) ratio of prestack gathers, leading to more accurate migration velocity analysis and better images after depth migration. Case studies with synthetic and field data examples show that tomo‐datuming is especially helpful when strong lateral velocity variations are present below the topography.


Sign in / Sign up

Export Citation Format

Share Document