First arrival Q tomography based on an adjoint-state method
Abstract Under the assumption of invariant ray path in a weakly dissipative (high quality factor Q) subsurface medium, a tomographic inversion approach composed of two cascading applications of first arrival traveltime and Q tomography is proposed for compensating amplitude loss caused by near-surface anomalies, such as unconsolidated soils or the overburden gas cloud. To improve the computational efficiency, these two related tomography methods were adopted with an adjoint-state technique. First, arrival traveltime tomography will be performed to provide an inverted velocity model as one of the inputs for the following first arrival Q tomography. Then, the synthetic first break generated by the inverted velocity model will be used as a stable guidance of accessing the scopes of first arrival waveforms in the time domain where the potential attenuated time information is contained. The attenuated time will be estimated through a logarithmic spectral ratio linear regression corresponding to frequency-dependent propagation responses of different wave types. All these estimated attenuated times will be applied with reference signals to generate synthetic attenuated seismic data in the time domain, and their discrepancies with real data will be evaluated using similarity coefficients. The ones with larger values will be selected as optimal attenuated time inputs for the following Q tomographic inversion. Examples of both synthetic and field data reveal the feasibility and potential of this method.