Migration from 3D irregular surfaces: A prestack time migration approach

Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. S117-S129 ◽  
Author(s):  
Jianfeng Zhang ◽  
Jincheng Xu ◽  
Hao Zhang

We have developed a modified 3D prestack time migration (PSTM) scheme that can handle rugged topography as well as high near-surface velocities in land seismic imaging. The proposed topography PSTM can be applied to seismic data recorded on a 3D irregular surface without static corrections. Two effective velocity parameters were found to describe wave propagation through inhomogeneous media above and below a chosen datum. As a result, wave propagation phenomena in the complex near surface, such as near-vertical incidences through a weathering layer and raypaths bending away from vertical in the presence of high near-surface velocities, are correctly considered. The two effective velocity parameters can be estimated by flattening events in imaging gathers. Hence, it is not necessary to have detailed knowledge of the near-surface velocity model and velocity field below the datum when applying topography PSTM. We integrated residual static corrections into topography PSTM. This eliminated the distortions along the events better than conventional residual static corrections, which are usually applied before migration. The computational cost of the topography PSTM was only slightly higher than that of conventional PSTM due to the use of a table-driven algorithm. Three-dimensional synthetic and field data sets were used to test the proposed topography PSTM. High-quality imaging results were obtained.

Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S235-S246 ◽  
Author(s):  
Jincheng Xu ◽  
Jianfeng Zhang

We have developed a modified prestack time migration (PSTM) approach that can directly image nonplanar data by using two effective velocity parameters above and below a datum. The proposed extension improves the so-called topography PSTM by introducing a dip-angle domain stationary-phase migration (or filtering) and combining effective velocity inversion with the residual static corrections. The stationary-phase migration to constrain the imaging aperture within Fresnel zones significantly improves the signal-to-noise ratio (S/N) of the image gathers, especially in the presence of steeply dipping structures. This helps to extract an accurate residual moveout from the common shot and receiver image gathers, and the surface-consistent residual statics hidden in these image gathers can be simultaneously obtained from an inversion process. As a result, the final migrated images show higher S/N and are better focused than the conventional topography PSTM. The proposed technique can handle rugged topography, especially in the presence of high near-surface velocities, without the need for prior elevation static corrections. The SEG foothills overthrust model and a real data set acquired on a piedmont zone are used to validate the modified topography PSTM. Synthetic and field data examples are obtained with good results.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. S21-S32
Author(s):  
Jincheng Xu ◽  
Jianfeng Zhang ◽  
Linong Liu ◽  
Wei Zhang ◽  
Hui Yang

We have developed a 3D prestack time migration (PSTM) approach that can directly migrate nonplanar data with near-surface-related deabsorption using three effective parameters. The proposed scheme improves the so-called topography PSTM approach by adding a near-surface effective [Formula: see text] parameter that compensates for the absorption and dispersion of waves propagating through near-surface media. The two effective velocity parameters above and below the datum can be estimated by flattening events in imaging gathers, and the additional near-surface effective [Formula: see text] parameter can be obtained using scanning technology. Hence, no knowledge with respect to near-surface media is needed in advance for implementing the proposed scheme. The proposed topography-deabsorption PSTM method can be applied to seismic data recorded on a 3D irregular surface without statics corrections. Consequently, traveltimes are obtained with improved accuracy because the raypath bends away from the vertical in the presence of high near-surface velocities, and the absorption and dispersion caused by strong intrinsic attenuation in near-surface media are correctly compensated. Moreover, we attenuated the migrated noise by smearing each time sample only along the Fresnel zone rather than along the entire migration aperture. As a result, an image with a higher resolution and superior signal-to-noise ratio is achieved. The performance of the proposed topography-deabsorption PSTM scheme has been verified using synthetic and field data sets.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE243-VE254 ◽  
Author(s):  
Xianhuai Zhu ◽  
Paul Valasek ◽  
Baishali Roy ◽  
Simon Shaw ◽  
Jack Howell ◽  
...  

Recent applications of 2D and 3D turning-ray tomography show that near-surface velocities are important for structural imaging and reservoir characterization. For structural imaging, we used turning-ray tomography to estimate the near-surface velocities for static corrections followed by prestack time migration and the near-surface velocities for prestack depth migration. Two-dimensional acoustic finite-difference modeling illustrates that wave-equation prestack depth migration is very sensitive to the near-surface velocities. Field data demonstrate that turning-ray tomography followed by prestack time migration helps to produce superior images in complex geologic settings. When the near-surface velocity model is integrated into a background velocity model for prestack depth migration, we find that wave propagation is very sensitive to the velocities immediately below the topography. For shallow-reservoir characterization, we developed and applied azimuthal turning-ray tomography to investigate observed apparent azimuthal-traveltime variations, using a wide-azimuth land seismic survey from a heavy-oil field at Surmont, Canada. We found that the apparent azimuthal velocity variations are not necessarily related to azimuthal anisotropy, or horizontal transverse isotropy (HTI), induced by the stress field or fractures. Near-surface heterogeneity and the acquisition footprint also could result in apparent azimuthal variations.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. U1-U11 ◽  
Author(s):  
Chunhui Dong ◽  
Shangxu Wang ◽  
Jianfeng Zhang ◽  
Jingsheng Ma ◽  
Hao Zhang

Migration velocity analysis is a labor-intensive part of the iterative prestack time migration (PSTM) process. We have developed a velocity estimation scheme to improve the efficiency of the velocity analysis process using an automatic approach. Our scheme is the numerical implementation of the conventional velocity analysis process based on residual moveout analysis. The key aspect of this scheme is the automatic event picking in the common-reflection point (CRP) gathers, which is implemented by semblance scanning trace by trace. With the picked traveltime curves, we estimate the velocities at discrete grids in the velocity model using the least-squares method, and build the final root-mean-square (rms) velocity model by spatial interpolation. The main advantage of our method is that it can generate an appropriate rms velocity model for PSTM in just a few iterations without manual manipulations. In addition, using the fitting curves of the picked events in a range of offsets to estimate the velocity model, which is fitting to a normal moveout correction, can prevent our scheme from the local minima issue. The Sigsbee2B model and a field data set are used to verify the feasibility of our scheme. High-quality velocity model and imaging results are obtained. Compared with the computational cost to generate the CRP gathers, the cost of our scheme can be neglected, and the quality of the initial velocity is not critical.


Geophysics ◽  
1990 ◽  
Vol 55 (6) ◽  
pp. 757-760 ◽  
Author(s):  
G. A. McMechan ◽  
H. W. Chen

Static effects due to surface topography and near‐surface velocity variations may be accurately compensated for, in an implicit way, during prestack reverse‐time migration of common‐source gathers, obviating the need for explicit static corrections. Receiver statics are incorporated by extrapolating the observed data from the actual recorder positions; source statics are incorporated by computing the excitation‐time imaging conditions from the actual source positions.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. S317-S331 ◽  
Author(s):  
Jianfeng Zhang ◽  
Zhengwei Li ◽  
Linong Liu ◽  
Jin Wang ◽  
Jincheng Xu

We have improved the so-called deabsorption prestack time migration (PSTM) by introducing a dip-angle domain stationary-phase implementation. Deabsorption PSTM compensates absorption and dispersion via an actual wave propagation path using effective [Formula: see text] parameters that are obtained during migration. However, noises induced by the compensation degrade the resolution gained and deabsorption PSTM requires more computational effort than conventional PSTM. Our stationary-phase implementation improves deabsorption PSTM through the determination of an optimal migration aperture based on an estimate of the Fresnel zone. This significantly attenuates the noises and reduces the computational cost of 3D deabsorption PSTM. We have estimated the 2D Fresnel zone in terms of two dip angles through building a pair of 1D migrated dip-angle gathers using PSTM. Our stationary-phase QPSTM (deabsorption PSTM) was implemented as a two-stage process. First, we used conventional PSTM to obtain the Fresnel zones. Then, we performed deabsorption PSTM with the Fresnel-zone-based optimized migration aperture. We applied stationary-phase QPSTM to a 3D field data. Comparison with synthetic seismogram generated from well log data validates the resolution enhancements.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. Q27-Q37
Author(s):  
Yang Shen ◽  
Jie Zhang

Refraction methods are often applied to model and image near-surface velocity structures. However, near-surface imaging is very challenging, and no single method can resolve all of the land seismic problems across the world. In addition, deep interfaces are difficult to image from land reflection data due to the associated low signal-to-noise ratio. Following previous research, we have developed a refraction wavefield migration method for imaging shallow and deep interfaces via interferometry. Our method includes two steps: converting refractions into virtual reflection gathers and then applying a prestack depth migration method to produce interface images from the virtual reflection gathers. With a regular recording offset of approximately 3 km, this approach produces an image of a shallow interface within the top 1 km. If the recording offset is very long, the refractions may follow a deep path, and the result may reveal a deep interface. We determine several factors that affect the imaging results using synthetics. We also apply the novel method to one data set with regular recording offsets and another with far offsets; both cases produce sharp images, which are further verified by conventional reflection imaging. This method can be applied as a promising imaging tool when handling practical cases involving data with excessively weak or missing reflections but available refractions.


2001 ◽  
Vol 44 (2) ◽  
pp. 268-274 ◽  
Author(s):  
Yi-Ke LIU ◽  
Xu CHANG ◽  
Hui WANG ◽  
Fu-Zhong LI

Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Xianhuai Zhu ◽  
Burke G. Angstman ◽  
David P. Sixta

Through the use of iterative turning‐ray tomography followed by wave‐equation datuming (or tomo‐datuming) and prestack depth migration, we generate accurate prestack images of seismic data in overthrust areas containing both highly variable near‐surface velocities and rough topography. In tomo‐datuming, we downward continue shot records from the topography to a horizontal datum using velocities estimated from tomography. Turning‐ray tomography often provides a more accurate near‐surface velocity model than that from refraction statics. The main advantage of tomo‐datuming over tomo‐statics (tomography plus static corrections) or refraction statics is that instead of applying a vertical time‐shift to the data, tomo‐datuming propagates the recorded wavefield to the new datum. We find that tomo‐datuming better reconstructs diffractions and reflections, subsequently providing better images after migration. In the datuming process, we use a recursive finite‐difference (FD) scheme to extrapolate wavefield without applying the imaging condition, such that lateral velocity variations can be handled properly and approximations in traveltime calculations associated with the raypath distortions near the surface for migration are avoided. We follow the downward continuation step with a conventional Kirchhoff prestack depth migration. This results in better images than those migrated from the topography using the conventional Kirchhoff method with traveltime calculation in the complicated near surface. Since FD datuming is only applied to the shallow part of the section, its cost is much less than the whole volume FD migration. This is attractive because (1) prestack depth migration usually is used iteratively to build a velocity model, so both efficiency and accuracy are important factors to be considered; and (2) tomo‐datuming can improve the signal‐to‐noise (S/N) ratio of prestack gathers, leading to more accurate migration velocity analysis and better images after depth migration. Case studies with synthetic and field data examples show that tomo‐datuming is especially helpful when strong lateral velocity variations are present below the topography.


Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 721-732 ◽  
Author(s):  
Lanlan Yan ◽  
Larry R. Lines

Seismic imaging of complex structures from the western Canadian Foothills can be achieved by applying the closely coupled processes of velocity analysis and depth migration. For the purposes of defining these structures in the Shaw Basing area of western Alberta, we performed a series of tests on both synthetic and real data to find optimum imaging procedures for handling large topographic relief, near‐surface velocity variations, and the complex structural geology of steeply dipping formations. To better understand the seismic processing problems, we constructed a typical foothills geological model that included thrust faults and duplex structures, computed the model responses, and then compared the performance of different migration algorithms, including the explicit finite difference (f-x) and Kirchhoff integral methods. When the correct velocity was used in the migration tests, the f-x method was the most effective in migration from topography. In cases where the velocity model was not assumed known, we determined a macrovelocity model by performing migration/velocity analysis by using smiles and frowns in common image gathers and by using depth‐focusing analysis. In applying depth imaging to the seismic survey from the Shaw Basing area, we found that imaging problems were caused partly by near‐surface velocity problems, which were not anticipated in the modeling study. Several comparisons of different migration approaches for these data indicated that prestack depth migration from topography provided the best imaging results when near‐surface velocity information was incorporated. Through iterative and interpretive migration/velocity analysis, we built a macrovelocity model for the final prestack depth migration.


Sign in / Sign up

Export Citation Format

Share Document