High-resolution imaging: An approach by incorporating stationary-phase implementation into deabsorption prestack time migration

Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. S317-S331 ◽  
Author(s):  
Jianfeng Zhang ◽  
Zhengwei Li ◽  
Linong Liu ◽  
Jin Wang ◽  
Jincheng Xu

We have improved the so-called deabsorption prestack time migration (PSTM) by introducing a dip-angle domain stationary-phase implementation. Deabsorption PSTM compensates absorption and dispersion via an actual wave propagation path using effective [Formula: see text] parameters that are obtained during migration. However, noises induced by the compensation degrade the resolution gained and deabsorption PSTM requires more computational effort than conventional PSTM. Our stationary-phase implementation improves deabsorption PSTM through the determination of an optimal migration aperture based on an estimate of the Fresnel zone. This significantly attenuates the noises and reduces the computational cost of 3D deabsorption PSTM. We have estimated the 2D Fresnel zone in terms of two dip angles through building a pair of 1D migrated dip-angle gathers using PSTM. Our stationary-phase QPSTM (deabsorption PSTM) was implemented as a two-stage process. First, we used conventional PSTM to obtain the Fresnel zones. Then, we performed deabsorption PSTM with the Fresnel-zone-based optimized migration aperture. We applied stationary-phase QPSTM to a 3D field data. Comparison with synthetic seismogram generated from well log data validates the resolution enhancements.

Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. S21-S32
Author(s):  
Jincheng Xu ◽  
Jianfeng Zhang ◽  
Linong Liu ◽  
Wei Zhang ◽  
Hui Yang

We have developed a 3D prestack time migration (PSTM) approach that can directly migrate nonplanar data with near-surface-related deabsorption using three effective parameters. The proposed scheme improves the so-called topography PSTM approach by adding a near-surface effective [Formula: see text] parameter that compensates for the absorption and dispersion of waves propagating through near-surface media. The two effective velocity parameters above and below the datum can be estimated by flattening events in imaging gathers, and the additional near-surface effective [Formula: see text] parameter can be obtained using scanning technology. Hence, no knowledge with respect to near-surface media is needed in advance for implementing the proposed scheme. The proposed topography-deabsorption PSTM method can be applied to seismic data recorded on a 3D irregular surface without statics corrections. Consequently, traveltimes are obtained with improved accuracy because the raypath bends away from the vertical in the presence of high near-surface velocities, and the absorption and dispersion caused by strong intrinsic attenuation in near-surface media are correctly compensated. Moreover, we attenuated the migrated noise by smearing each time sample only along the Fresnel zone rather than along the entire migration aperture. As a result, an image with a higher resolution and superior signal-to-noise ratio is achieved. The performance of the proposed topography-deabsorption PSTM scheme has been verified using synthetic and field data sets.


2019 ◽  
Vol 220 (3) ◽  
pp. 1569-1584
Author(s):  
Zhengwei Li ◽  
Jianfeng Zhang

SUMMARY Accurate identification of the locations and orientations of small-scale faults plays an important role in seismic interpretation. We have developed a 3-D migration scheme that can image small-scale faults using diffractions in time. This provides a resolution beyond the classical Rayleigh limit of half a wavelength in detecting faults. The scheme images weak diffractions by building a modified dip-angle gather, which is obtained by replacing the two dip angles dimensions of the conventional 2-D dip-angle gather with tangents of the dip angles. We build the modified 2-D dip-angle gathers by calculating the tangents of dip angles following 3-D prestack time migration (PSTM). In the resulting modified 2-D dip-angle gathers, the Fresnel zone related to the specular reflection exhibits an ellipse. Comparing with the conventional 2-D dip-angle gather, diffraction event related a fault exhibits a straight cylinder shape with phase-reversal across a line related the orientation of the fault. As a result, we can not only mute the Fresnel zones related to reflections, correct phase for edge diffractions and obtain the image of faults, but also detect the orientations of 3-D faults using the modified dip-angle gathers. Like the conventional dip-angle gathers, the modified dip-angle gathers can also be used to image diffractions resulting from other sources. 3-D Field data tests demonstrate the validity of the proposed diffraction imaging scheme.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S235-S246 ◽  
Author(s):  
Jincheng Xu ◽  
Jianfeng Zhang

We have developed a modified prestack time migration (PSTM) approach that can directly image nonplanar data by using two effective velocity parameters above and below a datum. The proposed extension improves the so-called topography PSTM by introducing a dip-angle domain stationary-phase migration (or filtering) and combining effective velocity inversion with the residual static corrections. The stationary-phase migration to constrain the imaging aperture within Fresnel zones significantly improves the signal-to-noise ratio (S/N) of the image gathers, especially in the presence of steeply dipping structures. This helps to extract an accurate residual moveout from the common shot and receiver image gathers, and the surface-consistent residual statics hidden in these image gathers can be simultaneously obtained from an inversion process. As a result, the final migrated images show higher S/N and are better focused than the conventional topography PSTM. The proposed technique can handle rugged topography, especially in the presence of high near-surface velocities, without the need for prior elevation static corrections. The SEG foothills overthrust model and a real data set acquired on a piedmont zone are used to validate the modified topography PSTM. Synthetic and field data examples are obtained with good results.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. C217-C227 ◽  
Author(s):  
Baoqing Tian ◽  
Jiangjie Zhang

High-resolution imaging has become more popular recently in exploration geophysics. Conventionally, geophysicists image the subsurface using the isotropy approximation. When considering the anisotropy effects, one can expect to obtain an imaging profile with higher accuracy than the isotropy approach allows. Orthorhombic anisotropy is considered an ideal approximation in the realistic case. It has been used in the industry for several years. Although being attractive, broad application of orthorhombic anisotropy has many problems to solve. We have developed a novel approach of prestack time migration in the orthorhombic case. The traveltime and amplitude of a wave propagating in orthorhombic media are calculated directly by launching new anisotropic velocity and anisotropic parameters. We validate our methods with synthetic data. We also highlight our methods with model data set and real data. The results found that our methods work well for prestack time migration in orthorhombic media.


Geophysics ◽  
1991 ◽  
Vol 56 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Z. Li ◽  
W. Lynn ◽  
R. Chambers ◽  
Ken Larner ◽  
Ray Abma

Prestack frequency‐wavenumber (f-k) migration is a particularly efficient method of doing both full prestack time migration and migration velocity analysis. Conventional implementations of the method, however, can encounter several drawbacks: (1) poor resolution and spatial aliasing noise caused by insufficient sampling in the offset dimension, (2) poor definition of steep events caused by insufficient sampling in the velocity dimension, and (3) inadequate handling of ray bending for steep events. All three of these problems can be mitigated with modifications to the prestack f-k algorithm. The application of linear moveout (LMO) in the offset dimension prior to migration reduces event moveout and hence increases the bandwidth of non‐spatially aliased signals. To reduce problems of interpolation for steep events, the number of constant‐velocity migrations can be economically increased by performing residual poststack migrations. Finally, migration with a dip‐dependent imaging velocity addresses the issue of ray bending and thereby improves the positioning of steep events. None of these enhancements substantially increases the computational effort of f-k migration. Prestack f-k migration possesses a limitation for which no solution is readily available. Where lateral velocity variation is modest, steep events (such as fault‐plane reflections in sediments) may not be imaged as well as by other migration approaches. This shortcoming results from the restriction that, in the prestack f-k approach, a single velocity field must serve to perform two different functions: imaging and stacking. Nevertheless, in areas of strong velocity variation and gentle to moderate dip, the detailed velocity control afforded by the prestack f-k method is an excellent source of geologic information.


2017 ◽  
Vol 14 (2) ◽  
pp. 272-282 ◽  
Author(s):  
Jincheng Xu ◽  
Hao Zhang ◽  
Jianfeng Zhang ◽  
Zhengwei Li ◽  
Wei Liu

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. S555-S566 ◽  
Author(s):  
Zhengwei Li ◽  
Jianfeng Zhang

We have built a vertical traveltime difference (VTD) gather to image diffractions in the 3D time domain. This significantly improves detection of small-scale faults and heterogeneities in 3D seismic data. The VTD gather is obtained using 3D Kirchhoff prestack time migration based on the traveltime-related inline and crossline dip angles, which is closely related to the 2D dip-angle gather. In VTD gathers, diffraction events exhibit flattening, whereas reflection events have convex upward-sloping shapes. Different from the 2D dip-angle gather, Fresnel zone-related specular reflections are precisely focused on the given regions over all offsets and azimuths, thus leaving more diffraction energy after muting. To image linear diffractors, such as faults in three dimensions, the VTD gather can be extended into two dimensions by adding a dip-azimuth dimension. This makes it possible to correct phases of edge diffractions and detect the orientations of the linear diffractors. The memory requirement of the VTD or VTD plus azimuth gathers is much less than that of the 2D dip-angle gathers. We can store the gathers at each lateral position and then correct the phase and enhance the weak diffractions in 3D cases. Synthetic and field data tests demonstrate the effectiveness of our 3D diffraction imaging method.


Sign in / Sign up

Export Citation Format

Share Document