Automatic velocity analysis with reverse-time migration

Geophysics ◽  
2013 ◽  
Vol 78 (4) ◽  
pp. S179-S192 ◽  
Author(s):  
Wiktor Waldemar Weibull ◽  
Børge Arntsen

We apply a method to automatically estimate the background velocities using reverse-time migration. The method uses a combination of differential semblance and similarity-index (a.k.a., “semblance” or “stacking-power”) to measure the focusing error in imaging and a nonlinear optimization procedure to obtain the background velocities. A challenge in this procedure is that, for media consisting of complex and strongly refracting velocities, artifacts in the reverse-time migrated image (low-frequency noise) can cause the velocity analysis to diverge. We successfully overcome this issue by applying a simple vertical derivative filter to the image that is input to velocity analysis. The resultant velocity analysis method is tested in two 2D synthetic examples and one 2D field data example. Due to the assumptions inherent to prestack depth migration, the data that are input to velocity analysis must be singly scattered. To apply the method to multiple-rich data, we propose an image-based demultiple method. The method consists of muting events in the subsurface offset common image point gathers constructed with reverse-time migration, and remodeling the data using a kinematic demigration. A field data example shows how the image-based demultiple of the data helps to improve the velocity analysis in the presence of multiple scattering.

Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. S377-S389
Author(s):  
Yuting Duan ◽  
Paul Sava

We have developed three approaches for 3D angle decomposition using elastic reverse time migration. The first approach uses time- and space-lag common-image point gathers computed from elastic wavefields. This method facilitates computing angle gathers at sparse and possibly irregularly distributed points in the image. The second approach transforms extended time-lag images to the angle domain using slant stacks along 4D surfaces, instead of using slant stacks along 2D straight lines. The third approach transforms space-lag common-image gathers to the angle domain. The three proposed methods solve a system of equations that handles dipping reflectors, and they yield angle gathers that are more accurate compared with those obtained via alternative existing methods. We have developed our methods using 2D and 3D synthetic and field data examples and found that they provide accurate opening and azimuth angles and they can handle steeply dipping reflectors and converted wave modes.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. R13-R25 ◽  
Author(s):  
Wiktor Waldemar Weibull ◽  
Børge Arntsen

Seismic anisotropy, if not accounted for, can cause significant mispositioning of the reflectors in depth-migrated images. Accounting for anisotropy in depth migration requires velocity analysis tools that can estimate the anisotropic background velocity field. We extended wave equation migration velocity analysis to deal with 2D tilted transverse isotropic media. The velocities were obtained automatically by nonlinear optimization of the focusing and stack power of common-image point gathers constructed using an extended imaging condition. We used the elastic two-way wave equation to reconstruct the wavefields needed for the image and gradient computations. This led to an anisotropic migration velocity analysis algorithm based on reverse-time migration. We illustrated the method with synthetic and field data examples based on marine surface seismic acquisition. The results showed that the method significantly improves the quality of the depth-migrated image. However, as is common in the case of velocity analysis using surface seismic data, the estimation of anisotropic parameters seems to be strongly nonunique.


Author(s):  
Wiktor Weibull ◽  
Børge Arntsen ◽  
Marianne Houbiers ◽  
Joachim Mispel

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. S249-S259 ◽  
Author(s):  
Tong Zhou ◽  
Wenyi Hu ◽  
Jieyuan Ning

Most existing [Formula: see text]-compensated reverse time migration ([Formula: see text]-RTM) algorithms are based on pseudospectral methods. Because of the global nature of pseudospectral operators, these methods are not ideal for efficient parallelization, implying that they may suffer from high computational cost and inefficient memory usage for large-scale industrial problems. In this work, we reported a novel [Formula: see text]-RTM algorithm — the multistage optimized [Formula: see text]-RTM method. This [Formula: see text]-RTM algorithm uses a finite-difference method to compensate the amplitude and the phase simultaneously by uniquely combining two techniques: (1) a negative [Formula: see text] method for amplitude compensation and (2) a multistage dispersion optimization technique for phase correction. To prevent high-frequency noise from growing exponentially and ruining the imaging results, we apply a finite impulse response low-pass filter using the Kaiser window. The theoretical analyses and numerical experiments demonstrate that this [Formula: see text]-RTM algorithm precisely recovers the decayed amplitude and corrects the distorted phase caused by seismic attenuation effects, and hence produces higher resolution subsurface images with the correct structural depth information. This new method performs best in the frequency range of 10–70 Hz. Compared with pseudospectral [Formula: see text]-RTM methods, this [Formula: see text]-RTM approach offers nearly identical imaging quality. Based on local numerical differential operators, this [Formula: see text]-RTM method is very suitable for parallel computing and graphic processing unit implementation, an important feature for large 3D seismic surveys.


Geophysics ◽  
2021 ◽  
pp. 1-60
Author(s):  
Chuang Li ◽  
Zhaoqi Gao ◽  
Jinghuai Gao ◽  
Feipeng Li ◽  
Tao Yang

Angle-domain common-image gathers (ADCIGs) that can be used for migration velocity analysis and amplitude versus angle analysis are important for seismic exploration. However, because of limited acquisition geometry and seismic frequency band, the ADCIGs extracted by reverse time migration (RTM) suffer from illumination gaps, migration artifacts, and low resolution. We have developed a reflection angle-domain pseudo-extended plane-wave least-squares RTM method for obtaining high-quality ADCIGs. We build the mapping relations between the ADCIGs and the plane-wave sections using an angle-domain pseudo-extended Born modeling operator and an adjoint operator, based on which we formulate the extraction of ADCIGs as an inverse problem. The inverse problem is iteratively solved by a preconditioned stochastic conjugate gradient method, allowing for reduction in computational cost by migrating only a subset instead of the whole dataset and improving image quality thanks to preconditioners. Numerical tests on synthetic and field data verify that the proposed method can compensate for illumination gaps, suppress migration artifacts, and improve resolution of the ADCIGs and the stacked images. Therefore, compared with RTM, the proposed method provides a more reliable input for migration velocity analysis and amplitude versus angle analysis. Moreover, it also provides much better stacked images for seismic interpretation.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. S71-S87
Author(s):  
Yingming Qu ◽  
Jinli Li ◽  
Zhe Guan ◽  
Zhenchun Li

Compared to primary arrivals, multiples have longer propagation paths and smaller reflection angles, leading to a wider illumination area in the horizontal direction and higher resolution in the vertical direction. Hence, it is better to make full use of the multiples rather than suppressing them. However, seismic attenuation exists widely in the subsurface medium, especially directly below the deep sea bottom. Therefore, to compensate for the attenuation effect during multiple imaging, we have developed a viscoacoustic reverse time migration (RTM) method of different-order multiples. Following the multiple propagation paths, we compensate for the attenuation during source wavefield forward propagation and receiver backward propagation, and we introduce a regularization operator to automatically eliminate the exponential high-frequency noise during the attenuation compensation process. Taking advantage of the full wavefield information, we jointly use the different-order multiples and primaries when implementing viscoacoustic RTM. In numerical examples, we validate the viscoacoustic RTM of different-order multiples in a three-layer attenuation model and an attenuating Sigsbee2B model. Our results suggest that our method can image the models using different-order multiples separately, which suppresses crosstalk artifacts, balances energy, raises resolution, and improves subsalt images dramatically.


2018 ◽  
Vol 35 (2) ◽  
Author(s):  
Juan Guillermo Paniagua Castrillón ◽  
Olga Lucia Quintero Montoya ◽  
Daniel Sierra-Sosa

ABSTRACT. Reverse time migration (RTM) solves the acoustic or elastic wave equation by means of the extrapolation from source and receiver wavefield in time. A migrated image is obtained by applying a criteria known as imaging condition. The cross-correlation between source and receiver wavefields is the commonly used imaging condition. However, this imaging condition produces spatial low-frequency noise, called artifacts, due to the unwanted correlation of the diving, head and backscattered waves. Several techniques have been proposed to reduce the artifacts occurrence. Derivative operators as Laplacian are the most frequently used. In this work, we propose a technique based on a spiral phase filter ranging from 0 to 2π, and a toroidal amplitude bandpass filter, known as Laguerre-Gauss transform. Through numerical experiments we present the application of this particular filter on three synthetic data sets. In addition, we present a comparative spectral study of images obtained by the zero-lag cross-correlation imaging condition, the Laplacian filtering and the Laguerre-Gauss filtering, showing their frequency features. We also present evidences not only with simulated noisy velocity fields but also by comparison with the model velocity field gradients that this method improves the RTM images by reducing the artifacts and notably enhance the reflective events. Keywords: Laguerre-Gauss transform, zero-lag cross-correlation, seismic migration, imaging condition. RESUMO. A migração reversa no tempo (RTM) resolve a equação de onda acústica ou elástica por meio da extrapolação a partir do campo de onda da fonte e do receptor no tempo. Uma imagem migrada é obtida aplicando um critério conhecido como condição de imagem. A correlação cruzada entre campos de onda de fonte e receptor é a condição de imagem comumente usada. No entanto, esta condição de imagem produz ruído espacial de baixa frequência, chamados artefatos, devido à correlação indesejada das ondas de mergulho, cabeça e retrodifusão. Várias técnicas têm sido propostas para reduzir a ocorrência de artefatos. Operadores derivados como Laplaciano são os mais utilizados. Neste trabalho, propomos uma técnica baseada em um filtro de fase espiral que varia de 0 a 2π, e um filtro passabanda de amplitude toroidal, conhecido como transformada de Laguerre-Gauss. Através de experimentos numéricos, apresentamos a aplicação deste filtro particular em três conjuntos de dados sintéticos. Além disso, apresentamos um estudo comparativo espectral de imagens obtidas pela condição de imagem de correlação cruzada atraso zero, a filtragem de Laplaciano e a filtragem Laguerre-Gauss, mostrando suas características de frequência. Apresentamos evidências não somente com campos simulados de velocidade ruidosa, mas também por comparação com os gradientes de campo de velocidade do modelo que este método melhora as imagens RTM, reduzindo os artefatos e aumentando notavelmente os eventos reflexivos. Palavras-chave: Transformação de Laguerre-Gauss, correlação cruzada atraso zero, migração sísmica, condição de imagem.


Sign in / Sign up

Export Citation Format

Share Document