Least-squares migration in the presence of velocity errors
Seismic migration requires an accurate background velocity model that correctly predicts the kinematics of wave propagation in the true subsurface. Least-squares migration, which seeks the inverse rather than the adjoint of a forward modeling operator, is especially sensitive to errors in this background model. This can result in traveltime differences between predicted and observed data that lead to incoherent and defocused migration images. We have developed an alternative misfit function for use in least-squares migration that measures amplitude differences between predicted and observed data, i.e., differences after correcting for nonzero traveltime shifts between predicted and observed data. We demonstrated on synthetic and field data that, when the background velocity model is incorrect, the use of this misfit function results in better focused migration images. Results suggest that our method best enhances image focusing when differences between predicted and observed data can be explained by traveltime shifts.