A stable and practical implementation of least-squares reverse time migration

Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. V23-V31 ◽  
Author(s):  
Yu Zhang ◽  
Lian Duan ◽  
Yi Xie

By adapting reverse time migration (RTM) and demigration as the migration and modeling operators to maximize the crosscorrelation between the simulated and the acquired seismic data, we introduced a new practical least-squares RTM (LSRTM) scheme and derived a steepest descent method in seeking the optimal image. Through synthetic and real data experiments, we determined that the proposed LSRTM provided high-quality images with balanced amplitudes, improved focusing, and enhanced resolution. The method was also capable of removing free surface ghosts caused by towed streamer acquisition, filling the structures and reducing crosstalk noise associated with simultaneous shooting.

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. S581-S598 ◽  
Author(s):  
Bin He ◽  
Yike Liu ◽  
Yanbao Zhang

In the past few decades, the least-squares reverse time migration (LSRTM) algorithm has been widely used to enhance images of complex subsurface structures by minimizing the data misfit function between the predicted and observed seismic data. However, this algorithm is sensitive to the accuracy of the migration velocity model, which, in the case of real data applications (generally obtained via tomography), always deviates from the true velocity model. Therefore, conventional LSRTM faces a cycle-skipping problem caused by a smeared image when using an inaccurate migration velocity model. To address the cycle-skipping problem, we have introduced an angle-domain LSRTM algorithm. Unlike the conventional LSRTM algorithm, our method updates the common source-propagation angle image gathers rather than the stacked image. An extended Born modeling operator in the common source-propagation angle domain is was derived, which reproduced kinematically accurate data in the presence of velocity errors. Our method can provide more focused images with high resolution as well as angle-domain common-image gathers (ADCIGs) with enhanced resolution and balanced amplitudes. However, because the velocity model is not updated, the provided image can have errors in depth. Synthetic and field examples are used to verify that our method can robustly improve the quality of the ADCIGs and the finally stacked images with affordable computational costs in the presence of velocity errors.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. S285-S297
Author(s):  
Zhina Li ◽  
Zhenchun Li ◽  
Qingqing Li ◽  
Qingyang Li ◽  
Miaomiao Sun ◽  
...  

The migration of multiples can provide complementary information about the subsurface, but crosstalk artifacts caused by the interference between different-order multiples reduce its reliability. To mitigate the crosstalk artifacts, least-squares reverse time migration (LSRTM) of multiples is suggested by some researchers. Multiples are more affected by attenuation than primaries because of the longer travel path. To avoid incorrect waveform matching during the inversion, we propose to include viscosity in the LSRTM implementation. A method of LSRTM of multiples is introduced based on a viscoacoustic wave equation, which is derived from the generalized standard linear solid model. The merit of the proposed method is that it not only compensates for the amplitude loss and phase change, which cannot be achieved by traditional RTM and LSRTM of multiples, but it also provides more information about the subsurface with fewer crosstalk artifacts by using multiples compared with the viscoacoustic LSRTM of primaries. Tests on sensitivity to the errors in the velocity model, the Q model, and the separated multiples reveal that accurate models and input multiples are vital to the image quality. Numerical tests on synthetic models and real data demonstrate the advantages of our approach in improving the quality of the image in terms of amplitude balancing and signal-to-noise ratio.


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. S11-S20 ◽  
Author(s):  
Zhiguang Xue ◽  
Yangkang Chen ◽  
Sergey Fomel ◽  
Junzhe Sun

Simultaneous-source acquisition improves the efficiency of the seismic data acquisition process. However, direct imaging of simultaneous-source data may introduce crosstalk artifacts in the final image. Likewise, direct imaging of incomplete data avoids the step of data reconstruction, but it can suffer from migration artifacts. We have proposed to incorporate shaping regularization into least-squares reverse time migration (LSRTM) and use it for suppressing interference noise caused by simultaneous-source data or migration artifacts caused by incomplete data. To implement LSRTM, we have applied lowrank one-step reverse time migration and its adjoint iteratively in the conjugate-gradient algorithm to minimize the data misfit. A shaping operator imposing structure constraints on the estimated model was applied at each iteration. We constructed the shaping operator as a structure-enhancing filtering to attenuate migration artifacts and crosstalk noise while preserving structural information. We have carried out numerical tests on synthetic models in which the proposed method exhibited a fast convergence rate and was effective in attenuating migration artifacts and crosstalk noise.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. R361-R368 ◽  
Author(s):  
Qiancheng Liu ◽  
Daniel Peter

Least-squares reverse time migration (LSRTM) is an iterative inversion algorithm for estimating the broadband-wavenumber reflectivity model. Although it produces superior results compared with conventional reverse time migration (RTM), LSRTM is computationally expensive. We have developed a one-step LSRTM method by considering the demigrated and observed data to design a deblurring preconditioner in the data domain using the Wiener filter. For the Wiener filtering, we further use a stabilized division algorithm via the Taylor expansion. The preconditioned observed data are then remigrated to obtain a deblurred image. The total cost of this method is about two RTMs. Through synthetic and real data experiments, we see that one-step LSRTM is able to enhance image resolution and balance source illumination at low computational costs.


2021 ◽  
Vol 1719 (1) ◽  
pp. 012030
Author(s):  
Phudit Sombutsirinun ◽  
Chaiwoot Boonyasiriwat

Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.


Sign in / Sign up

Export Citation Format

Share Document