Application of unsplit convolutional perfectly matched layer for scalar arbitrarily wide-angle wave equation

Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. T313-T321 ◽  
Author(s):  
Hanming Chen ◽  
Hui Zhou ◽  
Yanqi Li

A classical split perfectly matched layer (PML) method has recently been applied to the scalar arbitrarily wide-angle wave equation (AWWE) in terms of displacement. However, the classical split PML obviously increases computational cost and cannot efficiently absorb waves propagating into the absorbing layer at grazing incidence. Our goal was to improve the computational efficiency of AWWE and to enhance the suppression of edge reflections by applying a convolutional PML (CPML). We reformulated the original AWWE as a first-order formulation and incorporated the CPML with a general complex frequency shifted stretching operator into the renewed formulation. A staggered-grid finite-difference (FD) method was adopted to discretize the first-order equation system. For wavefield depth continuation, the first-order AWWE with the CPML saved memory compared with the original second-order AWWE with the conventional split PML. With the help of numerical examples, we verified the correctness of the staggered-grid FD method and concluded that the CPML can efficiently absorb evanescent and propagating waves.

Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1277-1298
Author(s):  
Xiaoyu Zhang ◽  
Dong Zhang ◽  
Qiong Chen ◽  
Yan Yang

Abstract. The forward modeling of a scalar wave equation plays an important role in the numerical geophysical computations. The finite-difference algorithm in the form of a second-order wave equation is one of the commonly used forward numerical algorithms. This algorithm is simple and is easy to implement based on the conventional grid. In order to ensure the accuracy of the calculation, absorption layers should be introduced around the computational area to suppress the wave reflection caused by the artificial boundary. For boundary absorption conditions, a perfectly matched layer is one of the most effective algorithms. However, the traditional perfectly matched layer algorithm is calculated using a staggered grid based on the first-order wave equation, which is difficult to directly integrate into a conventional-grid finite-difference algorithm based on the second-order wave equation. Although a perfectly matched layer algorithm based on the second-order equation can be derived, the formula is rather complex and intermediate variables need to be introduced, which makes it hard to implement. In this paper, we present a simple and efficient algorithm to match the variables at the boundaries between the computational area and the absorbing boundary area. This new boundary-matched method can integrate the traditional staggered-grid perfectly matched layer algorithm and the conventional-grid finite-difference algorithm without formula transformations, and it can ensure the accuracy of finite-difference forward modeling in the computational area. In order to verify the validity of our method, we used several models to carry out numerical simulation experiments. The comparison between the simulation results of our new boundary-matched algorithm and other boundary absorption algorithms shows that our proposed method suppresses the reflection of the artificial boundaries better and has a higher computational efficiency.


2018 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Dong Zhang ◽  
Qiong Chen ◽  
Yan Yang

Abstract. The forward modeling of a scalar wave equation plays an important role in the numerical geophysical computations. The finite-difference algorithm in the form of a second-order wave equation is one of the commonly used forward numerical algorithms. This algorithm is simple and is easy to implement based on the conventional-grid. In order to ensure the accuracy of the calculation, absorption layers should be introduced around the computational area to suppress the wave reflection caused by the artificial boundary. For boundary absorption conditions, a perfectly matched layer is one of the most effective algorithms. However, the traditional perfectly matched layer algorithm is calculated using a staggered-grid based on the first-order wave equation, which is difficult to directly integrate into a conventional-grid finite-difference algorithm based on the second-order wave equation. Although a perfectly matched layer algorithm based on the second-order equation can be derived, the formula is rather complex and intermediate variables need to be introduced, which makes it hard to implement. In this paper, we present a simple and efficient algorithm to match the variables at the boundaries between the computational area and the absorbing boundary area. This new boundary matched method can integrate the traditional staggered-grid perfectly matched layer algorithm and the conventional-grid finite-difference algorithm without formula transformations, and it can ensure the accuracy of finite-difference forward modeling in the computational area. In order to verify the validity of our method, we used several models to carry out numerical simulation experiments. The comparison between the simulation results of our new boundary matched algorithm and other boundary absorption algorithms shows that our proposed method suppresses the reflection of the artificial boundaries better and has a higher computational efficiency.


Geophysics ◽  
2021 ◽  
pp. 1-78
Author(s):  
Zhiyuan Li ◽  
Youshan Liu ◽  
Guanghe Liang ◽  
Guoqiang Xue ◽  
Runjie Wang

The separation of P- and S-wavefields is considered to be an effective approach for eliminating wave-mode cross-talk in elastic reverse-time migration. At present, the Helmholtz decomposition method is widely used for isotropic media. However, it tends to change the amplitudes and phases of the separated wavefields compared with the original wavefields. Other methods used to obtain pure P- and S-wavefields include the application of the elastic wave equations of the decoupled wavefields. To achieve a high computational accuracy, staggered-grid finite-difference (FD) schemes are usually used to numerically solve the equations by introducing an additional stress variable. However, the computational cost of this method is high because a conventional hybrid wavefield (P- and S-wavefields are mixed together) simulation must be created before the P- and S-wavefields can be calculated. We developed the first-order particle velocity equations to reduce the computational cost. The equations can describe four types of particle velocity wavefields: the vector P-wavefield, the scalar P-wavefield, the vector S-wavefield, and the vector S-wavefield rotated in the direction of the curl factor. Without introducing the stress variable, only the four types of particle velocity variables are used to construct the staggered-grid FD schemes, so the computational cost is reduced. We also present an algorithm to calculate the P and S propagation vectors using the four particle velocities, which is simpler than the Poynting vector. Finally, we applied the velocity equations and propagation vectors to elastic reverse-time migration and angle-domain common-image gather computations. These numerical examples illustrate the efficiency of the proposed methods.


Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. SM155-SM167 ◽  
Author(s):  
Dimitri Komatitsch ◽  
Roland Martin

The perfectly matched layer (PML) absorbing boundary condition has proven to be very efficient from a numerical point of view for the elastic wave equation to absorb both body waves with nongrazing incidence and surface waves. However, at grazing incidence the classical discrete PML method suffers from large spurious reflections that make it less efficient for instance in the case of very thin mesh slices, in the case of sources located close to the edge of the mesh, and/or in the case of receivers located at very large offset. We demonstrate how to improve the PML at grazing incidence for the differential seismic wave equation based on an unsplit convolution technique. The improved PML has a cost that is similar in terms of memory storage to that of the classical PML. We illustrate the efficiency of this improved convolutional PML based on numerical benchmarks using a finite-difference method on a thin mesh slice for an isotropic material and show that results are significantly improved compared with the classical PML technique. We also show that, as the classical PML, the convolutional technique is intrinsically unstable in the case of some anisotropic materials.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 202
Author(s):  
Cheng Sun ◽  
Zailin Yang ◽  
Guanxixi Jiang

In this paper, we present a stable and accurate high-order methodology for the symmetric matrix form (SMF) of the elastic wave equation. We use an accurate high-order upwind finite difference method to define spatial discretization. Then, an efficient complex frequency-shifted (CFS) unsplit multi-axis perfectly matched layer (MPML) is implemented using the auxiliary differential equation (ADE) that is used to build higher-order time schemes for elastodynamics in the unbounded curve domain. It is derived to be compatible with SMF. The SMF framework has a general form of a hyperbolic partial differential equation (PDE) that can be expanded to different dimensions (2D, 3D) or different wave modal (SH, P-SV) without requiring significant modifications owing to a simplified process of derivation and programming. Subsequently, an energy analysis on the framework combined with initial boundary value problems is conducted, and the stability analysis can be extended to a semi-discrete approximation similarly. Thus, we propose a semi-discrete approximation based on ADE CFS-MPML in which the curve domain is discretized using the upwind summation-by-parts (SBP) operators, and where the boundary conditions are enforced weakly using the simultaneous approximation terms (SAT). The proposed method’s robustness and adequacy are illustrated by conducting several numerical simulations.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S259-S269 ◽  
Author(s):  
Marco Salcedo ◽  
Amélia Novais ◽  
Jörg Schleicher ◽  
Jessé C. Costa

Complex Padé Fourier finite-difference migration is a stable one-way wave-equation technique that allows for better treatment of evanescent modes than its real counterpart, in this way producing fewer artifacts. As for real Fourier finite-difference (FFD) migration, its parameters can be optimized to improve the imaging of steeply dipping reflectors. The dip limitation of the FFD operator depends on the variation of the velocity field. We have developed a wide-angle approximation for the one-way continuation operator by means of optimization of the Padé coefficients and the most important velocity-dependent parameter. We have evaluated the achieved quality of the approximate dispersion relation in dependence on the chosen function of the ratio between the model and reference velocities under consideration of the number of terms in the Padé approximation and the branch-cut rotation angle. The optimized parameters are chosen based on the migration results and the computational cost. We found that by using the optimized parameters, a one-term expansion achieves the highest dip angles. The implementations were validated on the Marmousi data set and SEG/EAGE salt model data.


Sign in / Sign up

Export Citation Format

Share Document