Application of waveform tomography to a crooked-line 2D land seismic data set

Geophysics ◽  
2015 ◽  
Vol 80 (5) ◽  
pp. B115-B129 ◽  
Author(s):  
Rie Kamei ◽  
Takayuki Miyoshi ◽  
R. Gerhard Pratt ◽  
Mamoru Takanashi ◽  
Shogo Masaya
Geophysics ◽  
1996 ◽  
Vol 61 (3) ◽  
pp. 902-913 ◽  
Author(s):  
Delaine Thompson Reiter ◽  
William Rodi

The acoustic inverse problem of crosshole seismology is nonlinear in the medium velocities and ill‐posed because of the lack of complete data coverage surrounding the area of interest. In light of these facts, this paper develops a new nonlinear waveform tomography technique for imaging acoustic velocities from crosshole seismic data. The technique, based on Tikhonov regularization, defines solution models that minimize the normed misfit between observed and modeled data subject to a constraint on the spatial roughness of the model. This type of regularization produces minimum structure velocity models which can vary in their degree of smoothness versus fit to the data. We solve the Tikhonov minimization condition numerically using a conjugate gradient algorithm. To accurately calculate the components of the forward problem, we use a frequency‐domain integral equation method with sinc basis functions. The integral equation method discretizes the integral form of the acoustic wave equation over a 2-D area and produces a two‐part matrix problem that we solve for Green’s functions and total fields in the medium using general matrix decomposition techniques. We successfully apply nonlinear waveform tomography to a scale‐model data set obtained from an ultrasonic modeling tank. This data set comes from a mostly plane‐layered, epoxy‐resin model, and the data exhibit elastic effects and other complicated wave phenomena. We invert this data set for the lateral variations in the model using a smoothed 1-D starting model to demonstrate the usefulness and efficacy of nonlinear waveform tomography.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. U67-U76 ◽  
Author(s):  
Robert J. Ferguson

The possibility of improving regularization/datuming of seismic data is investigated by treating wavefield extrapolation as an inversion problem. Weighted, damped least squares is then used to produce the regularized/datumed wavefield. Regularization/datuming is extremely costly because of computing the Hessian, so an efficient approximation is introduced. Approximation is achieved by computing a limited number of diagonals in the operators involved. Real and synthetic data examples demonstrate the utility of this approach. For synthetic data, regularization/datuming is demonstrated for large extrapolation distances using a highly irregular recording array. Without approximation, regularization/datuming returns a regularized wavefield with reduced operator artifacts when compared to a nonregularizing method such as generalized phase shift plus interpolation (PSPI). Approximate regularization/datuming returns a regularized wavefield for approximately two orders of magnitude less in cost; but it is dip limited, though in a controllable way, compared to the full method. The Foothills structural data set, a freely available data set from the Rocky Mountains of Canada, demonstrates application to real data. The data have highly irregular sampling along the shot coordinate, and they suffer from significant near-surface effects. Approximate regularization/datuming returns common receiver data that are superior in appearance compared to conventional datuming.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C81-C92 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Hilde Grude Borgos ◽  
Martin Landrø

Effects of pressure and fluid saturation can have the same degree of impact on seismic amplitudes and differential traveltimes in the reservoir interval; thus, they are often inseparable by analysis of a single stacked seismic data set. In such cases, time-lapse AVO analysis offers an opportunity to discriminate between the two effects. We quantify the uncertainty in estimations to utilize information about pressure- and saturation-related changes in reservoir modeling and simulation. One way of analyzing uncertainties is to formulate the problem in a Bayesian framework. Here, the solution of the problem will be represented by a probability density function (PDF), providing estimations of uncertainties as well as direct estimations of the properties. A stochastic model for estimation of pressure and saturation changes from time-lapse seismic AVO data is investigated within a Bayesian framework. Well-known rock physical relationships are used to set up a prior stochastic model. PP reflection coefficient differences are used to establish a likelihood model for linking reservoir variables and time-lapse seismic data. The methodology incorporates correlation between different variables of the model as well as spatial dependencies for each of the variables. In addition, information about possible bottlenecks causing large uncertainties in the estimations can be identified through sensitivity analysis of the system. The method has been tested on 1D synthetic data and on field time-lapse seismic AVO data from the Gullfaks Field in the North Sea.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. R199-R217 ◽  
Author(s):  
Xintao Chai ◽  
Shangxu Wang ◽  
Genyang Tang

Seismic data are nonstationary due to subsurface anelastic attenuation and dispersion effects. These effects, also referred to as the earth’s [Formula: see text]-filtering effects, can diminish seismic resolution. We previously developed a method of nonstationary sparse reflectivity inversion (NSRI) for resolution enhancement, which avoids the intrinsic instability associated with inverse [Formula: see text] filtering and generates superior [Formula: see text] compensation results. Applying NSRI to data sets that contain multiples (addressing surface-related multiples only) requires a demultiple preprocessing step because NSRI cannot distinguish primaries from multiples and will treat them as interference convolved with incorrect [Formula: see text] values. However, multiples contain information about subsurface properties. To use information carried by multiples, with the feedback model and NSRI theory, we adapt NSRI to the context of nonstationary seismic data with surface-related multiples. Consequently, not only are the benefits of NSRI (e.g., circumventing the intrinsic instability associated with inverse [Formula: see text] filtering) extended, but also multiples are considered. Our method is limited to be a 1D implementation. Theoretical and numerical analyses verify that given a wavelet, the input [Formula: see text] values primarily affect the inverted reflectivities and exert little effect on the estimated multiples; i.e., multiple estimation need not consider [Formula: see text] filtering effects explicitly. However, there are benefits for NSRI considering multiples. The periodicity and amplitude of the multiples imply the position of the reflectivities and amplitude of the wavelet. Multiples assist in overcoming scaling and shifting ambiguities of conventional problems in which multiples are not considered. Experiments using a 1D algorithm on a synthetic data set, the publicly available Pluto 1.5 data set, and a marine data set support the aforementioned findings and reveal the stability, capabilities, and limitations of the proposed method.


Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. M41-M48 ◽  
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali

The ideal approach for continuous reservoir monitoring allows generation of fast and accurate images to cope with the massive data sets acquired for such a task. Conventionally, rigorous depth-oriented velocity-estimation methods are performed to produce sufficiently accurate velocity models. Unlike the traditional way, the target-oriented imaging technology based on the common-focus point (CFP) theory can be an alternative for continuous reservoir monitoring. The solution is based on a robust data-driven iterative operator updating strategy without deriving a detailed velocity model. The same focusing operator is applied on successive 3D seismic data sets for the first time to generate efficient and accurate 4D target-oriented seismic stacked images from time-lapse field seismic data sets acquired in a [Formula: see text] injection project in Saudi Arabia. Using the focusing operator, target-oriented prestack angle domain common-image gathers (ADCIGs) could be derived to perform amplitude-versus-angle analysis. To preserve the amplitude information in the ADCIGs, an amplitude-balancing factor is applied by embedding a synthetic data set using the real acquisition geometry to remove the geometry imprint artifact. Applying the CFP-based target-oriented imaging to time-lapse data sets revealed changes at the reservoir level in the poststack and prestack time-lapse signals, which is consistent with the [Formula: see text] injection history and rock physics.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. B281-B287 ◽  
Author(s):  
Xiwu Liu ◽  
Fengxia Gao ◽  
Yuanyin Zhang ◽  
Ying Rao ◽  
Yanghua Wang

We developed a case study of seismic resolution enhancement for shale-oil reservoirs in the Q Depression, China, featured by rhythmic bedding. We proposed an innovative method for resolution enhancement, called the full-band extension method. We implemented this method in three consecutive steps: wavelet extraction, filter construction, and data filtering. First, we extracted a constant-phase wavelet from the entire seismic data set. Then, we constructed the full-band extension filter in the frequency domain using the least-squares inversion method. Finally, we applied the band extension filter to the entire seismic data set. We determined that this full-band extension method, with a stretched frequency band from 7–70 to 2–90 Hz, may significantly enhance 3D seismic resolution and distinguish reflection events of rhythmite groups in shale-oil reservoirs.


2021 ◽  
Vol 73 (02) ◽  
pp. 68-69
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 200577, “Applications of Artificial Neural Networks for Seismic Facies Classification: A Case Study From the Mid-Cretaceous Reservoir in a Supergiant Oil Field,” by Ali Al-Ali, Karl Stephen, SPE, and Asghar Shams, Heriot-Watt University, prepared for the 2020 SPE Europec featured at the 82nd EAGE Conference and Exhibition, originally scheduled to be held in Amsterdam, 1-3 December. The paper has not been peer reviewed. Facies classification using data from sources such as wells and outcrops cannot capture all reservoir characterization in the interwell region. Therefore, as an alternative approach, seismic facies classification schemes are applied to reduce the uncertainties in the reservoir model. In this study, a machine-learning neural network was introduced to predict the lithology required for building a full-field Earth model for carbonate reservoirs in southern Iraq. The work and the methodology provide a significant improvement in facies classification and reveal the capability of a probabilistic neural network technique. Introduction The use of machine learning in seismic facies classification has increased gradually during the past decade in the interpretation of 3D and 4D seismic volumes and reservoir characterization work flows. The complete paper provides a literature review regarding this topic. Previously, seismic reservoir characterization has revealed the heterogeneity of the Mishrif reservoir and its distribution in terms of the pore system and the structural model. However, the main objective of this work is to classify and predict the heterogeneous facies of the carbonate Mishrif reservoir in a giant oil field using a multilayer feed-forward network (MLFN) and a probabilistic neural network (PNN) in nonlinear facies classification techniques. A related objective was to find any domain-specific causal relationships among input and output variables. These two methods have been applied to classify and predict the presence of different facies in Mishrif reservoir rock types. Case Study Reservoir and Data Set Description. The West Qurna field is a giant, multibillion-barrel oil field in the southern Mesopotamian Basin with multiple carbonate and clastic reservoirs. The overall structure of the field is a north/south trending anticline steep on the western flank and gentle on the eastern flank. Many producing reservoirs developed in this oil field; however, the Mid- Cretaceous Mishrif reservoir is the main producing reservoir. The reservoir consists of thick carbonate strata (roughly 250 m) deposited on a shallow water platform adjacent to more-distal, deeper-water nonreservoir carbonate facies developing into three stratigraphic sequence units in the second order. Mishrif facies are characterized by a porosity greater than 20% and large permeability contrast from grainstones to microporosity (10-1000 md). The first full-field 3D seismic data set was achieved over 500 km2 during 2012 and 2013 in order to plan the development of all field reservoirs. A de-tailed description of the reservoir has been determined from well logs and core and seismic data. This study is mainly based on facies log (22 wells) and high-resolution 3D seismic volume to generate seismic attributes as the input data for the training of the neural network model. The model is used to evaluate lithofacies in wells without core data but with appropriate facies logs. Also, testing was carried out in parallel with the core data to verify the results of facies classification.


Sign in / Sign up

Export Citation Format

Share Document