Common-focus point-based target-oriented imaging approach for continuous seismic reservoir monitoring

Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. M41-M48 ◽  
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali

The ideal approach for continuous reservoir monitoring allows generation of fast and accurate images to cope with the massive data sets acquired for such a task. Conventionally, rigorous depth-oriented velocity-estimation methods are performed to produce sufficiently accurate velocity models. Unlike the traditional way, the target-oriented imaging technology based on the common-focus point (CFP) theory can be an alternative for continuous reservoir monitoring. The solution is based on a robust data-driven iterative operator updating strategy without deriving a detailed velocity model. The same focusing operator is applied on successive 3D seismic data sets for the first time to generate efficient and accurate 4D target-oriented seismic stacked images from time-lapse field seismic data sets acquired in a [Formula: see text] injection project in Saudi Arabia. Using the focusing operator, target-oriented prestack angle domain common-image gathers (ADCIGs) could be derived to perform amplitude-versus-angle analysis. To preserve the amplitude information in the ADCIGs, an amplitude-balancing factor is applied by embedding a synthetic data set using the real acquisition geometry to remove the geometry imprint artifact. Applying the CFP-based target-oriented imaging to time-lapse data sets revealed changes at the reservoir level in the poststack and prestack time-lapse signals, which is consistent with the [Formula: see text] injection history and rock physics.

Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. M17-M26 ◽  
Author(s):  
Adeyemi Arogunmati ◽  
Jerry M. Harris

We present an iterative approach for quasi-continuous time-lapse seismic reservoir monitoring. This approach involves recording sparse data sets frequently, rather than complete data sets infrequently. In other words, it involves acquiring a completely sampled baseline data set followed by sparse monitor data sets at short calendar-time intervals. We use the term “sparse” to describe a data set that is a small fraction of what would normally be recorded in the field to reconstruct a high-spatial-resolution image of the subsurface. Each monitor data set could be as little as 2% of a single, complete conventional data set. The series of recorded time-lapse data sets is then used to estimate missing, unrecorded data in the sparse data sets. The approach was tested on synthetic and field crosswell traveltime data sets. Results show that this approach can be effective for quasi-continuous reservoir monitoring. Also, the accuracy of the estimated data increases as more sparse data sets are added to the time-lapse data series. Finally, a moving estimation window can be used to reduce computational effort for estimating data.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. M1-M13 ◽  
Author(s):  
Yichuan Wang ◽  
Igor B. Morozov

For seismic monitoring injected fluids during enhanced oil recovery or geologic [Formula: see text] sequestration, it is useful to measure time-lapse (TL) variations of acoustic impedance (AI). AI gives direct connections to the mechanical and fluid-related properties of the reservoir or [Formula: see text] storage site; however, evaluation of its subtle TL variations is complicated by the low-frequency and scaling uncertainties of this attribute. We have developed three enhancements of TL AI analysis to resolve these issues. First, following waveform calibration (cross-equalization) of the monitor seismic data sets to the baseline one, the reflectivity difference was evaluated from the attributes measured during the calibration. Second, a robust approach to AI inversion was applied to the baseline data set, based on calibration of the records by using the well-log data and spatially variant stacking and interval velocities derived during seismic data processing. This inversion method is straightforward and does not require subjective selections of parameterization and regularization schemes. Unlike joint or statistical inverse approaches, this method does not require prior models and produces accurate fitting of the observed reflectivity. Third, the TL AI difference is obtained directly from the baseline AI and reflectivity difference but without the uncertainty-prone subtraction of AI volumes from different seismic vintages. The above approaches are applied to TL data sets from the Weyburn [Formula: see text] sequestration project in southern Saskatchewan, Canada. High-quality baseline and TL AI-difference volumes are obtained. TL variations within the reservoir zone are observed in the calibration time-shift, reflectivity-difference, and AI-difference images, which are interpreted as being related to the [Formula: see text] injection.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. B243-B252 ◽  
Author(s):  
Peter Bergmann ◽  
Artem Kashubin ◽  
Monika Ivandic ◽  
Stefan Lüth ◽  
Christopher Juhlin

A method for static correction of time-lapse differences in reflection arrival times of time-lapse prestack seismic data is presented. These arrival-time differences are typically caused by changes in the near-surface velocities between the acquisitions and had a detrimental impact on time-lapse seismic imaging. Trace-to-trace time shifts of the data sets from different vintages are determined by crosscorrelations. The time shifts are decomposed in a surface-consistent manner, which yields static corrections that tie the repeat data to the baseline data. Hence, this approach implies that new refraction static corrections for the repeat data sets are unnecessary. The approach is demonstrated on a 4D seismic data set from the Ketzin [Formula: see text] pilot storage site, Germany, and is compared with the result of an initial processing that was based on separate refraction static corrections. It is shown that the time-lapse difference static correction approach reduces 4D noise more effectively than separate refraction static corrections and is significantly less labor intensive.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCC79-WCC89 ◽  
Author(s):  
Hansruedi Maurer ◽  
Stewart Greenhalgh ◽  
Sabine Latzel

Analyses of synthetic frequency-domain acoustic waveform data provide new insights into the design and imaging capability of crosshole surveys. The full complex Fourier spectral data offer significantly more information than other data representations such as the amplitude, phase, or Hartley spectrum. Extensive eigenvalue analyses are used for further inspection of the information content offered by the seismic data. The goodness of different experimental configurations is investigated by varying the choice of (1) the frequencies, (2) the source and receiver spacings along the boreholes, and (3) the borehole separation. With only a few carefully chosen frequencies, a similar amount of information can be extracted from the seismic data as can be extracted with a much larger suite of equally spaced frequencies. Optimized data sets should include at least one very low frequencycomponent. The remaining frequencies should be chosen fromthe upper end of the spectrum available. This strategy proved to be applicable to a simple homogeneous and a very complex velocity model. Further tests are required, but it appears on the available evidence to be model independent. Source and receiver spacings also have an effect on the goodness of an experimental setup, but there are only minor benefits to denser sampling when the increment is much smaller than the shortest wavelength included in a data set. If the borehole separation becomes unfavorably large, the information content of the data is degraded, even when many frequencies and small source and receiver spacings are considered. The findings are based on eigenvalue analyses using the true velocity models. Because under realistic conditions the true model is not known, it is shown that the optimized data sets are sufficiently robust to allow the iterative inversion schemes to converge to the global minimum. This is demonstrated by means of tomographic inversions of several optimized data sets.


2020 ◽  
Vol 39 (9) ◽  
pp. 668-678
Author(s):  
Alan Mur ◽  
César Barajas-Olalde ◽  
Donald C. Adams ◽  
Lu Jin ◽  
Jun He ◽  
...  

Understanding the behavior of CO2 injected into a reservoir and delineating its spatial distribution are fundamentally important in enhanced oil recovery (EOR) and CO2 capture and sequestration activities. Interdisciplinary geoscience collaboration and well-defined workflows, from data acquisition to reservoir simulation, are needed to effectively handle the challenges of EOR fields and envisioned future commercial-scale sites for planned and incidental geologic CO2 storage. Success of operations depends on decisions that are based on good understanding of geologic formation heterogeneities and fluid and pressure movements in the reservoir over large areas over time. We present a series of workflow steps that optimize the use of available data to improve and integrate the interpretation of facies, injection, and production effects in an EOR application. First, we construct a simulation-to-seismic model supported by rock physics to model the seismic signal and signal quality needed for 4D monitoring of fluid and pressure changes. Then we use Bayesian techniques to invert the baseline and monitor seismic data sets for facies and impedances. To achieve a balance between prior understanding of the reservoir and the recorded time-lapse seismic data, we invert the seismic data sets by using multiple approaches. We first invert the seismic data sets independently, exploring sensible parameter scenarios. With the resulting realizations, we develop a shared prior model to link the reservoir facies geometry between seismic vintages upon inversion. Then we utilize multirealization analysis methods to quantify the uncertainties of our predictions. Next, we show how data may be more deeply interrogated by using the facies inversion method to invert prestack seismic differences directly for production effects. Finally, we show and discuss the feedback loop for updating the static and dynamic reservoir simulation model to highlight the integration of geophysical and engineering data within a single model.


Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 1015-1025 ◽  
Author(s):  
J. E. Rickett ◽  
D. E. Lumley

Nonrepeatable noise, caused by differences in vintages of seismic acquisition and processing, can often make comparison and interpretation of time‐lapse 3‐D seismic data sets for reservoir monitoring misleading or futile. In this Gulf of Mexico case study, the major causes of nonrepeatable noise in the data sets are the result of differences in survey acquisition geometry and binning, temporal and spatial amplitude gain, wavelet bandwidth and phase, differential static time shifts, and relative mispositioning of imaged reflection events. We attenuate these acquisition and processing differences by developing and applying a cross‐equalization data processing flow for time‐lapse seismic data. The cross‐equalization flow consists of regridding the two data sets to a common grid; applying a space and time‐variant amplitude envelope balance; applying a first pass of matched filter corrections for global amplitude, bandwidth, phase and static shift corrections, followed by a dynamic warp to align mispositioned events; and, finally, running a second pass of constrained space‐variant matched filter operators. Difference sections obtained by subtracting the two data sets after each step of the cross‐equalization processing flow show a progressive reduction of nonrepeatable noise and a simultaneous improvement in time‐lapse reservoir signal.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C81-C92 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Hilde Grude Borgos ◽  
Martin Landrø

Effects of pressure and fluid saturation can have the same degree of impact on seismic amplitudes and differential traveltimes in the reservoir interval; thus, they are often inseparable by analysis of a single stacked seismic data set. In such cases, time-lapse AVO analysis offers an opportunity to discriminate between the two effects. We quantify the uncertainty in estimations to utilize information about pressure- and saturation-related changes in reservoir modeling and simulation. One way of analyzing uncertainties is to formulate the problem in a Bayesian framework. Here, the solution of the problem will be represented by a probability density function (PDF), providing estimations of uncertainties as well as direct estimations of the properties. A stochastic model for estimation of pressure and saturation changes from time-lapse seismic AVO data is investigated within a Bayesian framework. Well-known rock physical relationships are used to set up a prior stochastic model. PP reflection coefficient differences are used to establish a likelihood model for linking reservoir variables and time-lapse seismic data. The methodology incorporates correlation between different variables of the model as well as spatial dependencies for each of the variables. In addition, information about possible bottlenecks causing large uncertainties in the estimations can be identified through sensitivity analysis of the system. The method has been tested on 1D synthetic data and on field time-lapse seismic AVO data from the Gullfaks Field in the North Sea.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. R199-R217 ◽  
Author(s):  
Xintao Chai ◽  
Shangxu Wang ◽  
Genyang Tang

Seismic data are nonstationary due to subsurface anelastic attenuation and dispersion effects. These effects, also referred to as the earth’s [Formula: see text]-filtering effects, can diminish seismic resolution. We previously developed a method of nonstationary sparse reflectivity inversion (NSRI) for resolution enhancement, which avoids the intrinsic instability associated with inverse [Formula: see text] filtering and generates superior [Formula: see text] compensation results. Applying NSRI to data sets that contain multiples (addressing surface-related multiples only) requires a demultiple preprocessing step because NSRI cannot distinguish primaries from multiples and will treat them as interference convolved with incorrect [Formula: see text] values. However, multiples contain information about subsurface properties. To use information carried by multiples, with the feedback model and NSRI theory, we adapt NSRI to the context of nonstationary seismic data with surface-related multiples. Consequently, not only are the benefits of NSRI (e.g., circumventing the intrinsic instability associated with inverse [Formula: see text] filtering) extended, but also multiples are considered. Our method is limited to be a 1D implementation. Theoretical and numerical analyses verify that given a wavelet, the input [Formula: see text] values primarily affect the inverted reflectivities and exert little effect on the estimated multiples; i.e., multiple estimation need not consider [Formula: see text] filtering effects explicitly. However, there are benefits for NSRI considering multiples. The periodicity and amplitude of the multiples imply the position of the reflectivities and amplitude of the wavelet. Multiples assist in overcoming scaling and shifting ambiguities of conventional problems in which multiples are not considered. Experiments using a 1D algorithm on a synthetic data set, the publicly available Pluto 1.5 data set, and a marine data set support the aforementioned findings and reveal the stability, capabilities, and limitations of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document