Sparse reflectivity inversion for nonstationary seismic data with surface-related multiples: Numerical and field-data experiments

Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. R199-R217 ◽  
Author(s):  
Xintao Chai ◽  
Shangxu Wang ◽  
Genyang Tang

Seismic data are nonstationary due to subsurface anelastic attenuation and dispersion effects. These effects, also referred to as the earth’s [Formula: see text]-filtering effects, can diminish seismic resolution. We previously developed a method of nonstationary sparse reflectivity inversion (NSRI) for resolution enhancement, which avoids the intrinsic instability associated with inverse [Formula: see text] filtering and generates superior [Formula: see text] compensation results. Applying NSRI to data sets that contain multiples (addressing surface-related multiples only) requires a demultiple preprocessing step because NSRI cannot distinguish primaries from multiples and will treat them as interference convolved with incorrect [Formula: see text] values. However, multiples contain information about subsurface properties. To use information carried by multiples, with the feedback model and NSRI theory, we adapt NSRI to the context of nonstationary seismic data with surface-related multiples. Consequently, not only are the benefits of NSRI (e.g., circumventing the intrinsic instability associated with inverse [Formula: see text] filtering) extended, but also multiples are considered. Our method is limited to be a 1D implementation. Theoretical and numerical analyses verify that given a wavelet, the input [Formula: see text] values primarily affect the inverted reflectivities and exert little effect on the estimated multiples; i.e., multiple estimation need not consider [Formula: see text] filtering effects explicitly. However, there are benefits for NSRI considering multiples. The periodicity and amplitude of the multiples imply the position of the reflectivities and amplitude of the wavelet. Multiples assist in overcoming scaling and shifting ambiguities of conventional problems in which multiples are not considered. Experiments using a 1D algorithm on a synthetic data set, the publicly available Pluto 1.5 data set, and a marine data set support the aforementioned findings and reveal the stability, capabilities, and limitations of the proposed method.

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. B281-B287 ◽  
Author(s):  
Xiwu Liu ◽  
Fengxia Gao ◽  
Yuanyin Zhang ◽  
Ying Rao ◽  
Yanghua Wang

We developed a case study of seismic resolution enhancement for shale-oil reservoirs in the Q Depression, China, featured by rhythmic bedding. We proposed an innovative method for resolution enhancement, called the full-band extension method. We implemented this method in three consecutive steps: wavelet extraction, filter construction, and data filtering. First, we extracted a constant-phase wavelet from the entire seismic data set. Then, we constructed the full-band extension filter in the frequency domain using the least-squares inversion method. Finally, we applied the band extension filter to the entire seismic data set. We determined that this full-band extension method, with a stretched frequency band from 7–70 to 2–90 Hz, may significantly enhance 3D seismic resolution and distinguish reflection events of rhythmite groups in shale-oil reservoirs.


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. T11-T24 ◽  
Author(s):  
Xintao Chai ◽  
Shangxu Wang ◽  
Jianxin Wei ◽  
Jingnan Li ◽  
Hanjun Yin

We have developed a method of nonstationary sparse reflectivity inversion (NSRI) that directly retrieves the reflectivity series from nonstationary seismic data without the intrinsic instability associated with inverse [Formula: see text] filtering methods. We have investigated the NSRI performance in the presence of input error (e.g., the phase shift and the peak frequency of the wavelet), which determined that NSRI results are reasonable in the case of moderate error. NSRI was then applied to data collected from a laboratory physical model made of highly attenuating media, for which true reflectivities were known, but the wave propagation and the [Formula: see text] filtering mechanism were not. Analysis of data from the physical model, therefore, represented a blind test for evaluating the effectiveness and accuracy of NSRI. The physical model had a specified spatial scale of 1:5000 (relative to the field scale) and an approximate 1:1 velocity scale. Because the [Formula: see text] input is required by NSRI, attenuation of the P-wave was measured in the laboratory at ultrasonic frequencies with a pulse transmission technique and the spectral ratio method. Although multiples, side reflections from the model boundaries, diffractions, and other event types were clearly observed from the raw data, no preprocessing was done to avoid affecting the [Formula: see text] filtering effects. Results from the physical modeling data demonstrated that the derived formula for an attenuated seismogram was correct and estimated [Formula: see text] values were reliable. The functions and advantages of NSRI were confirmed. The [Formula: see text] compensated seismogram generated by NSRI was superior to that generated using gain-limited inverse [Formula: see text] filtering. We have also investigated NSRI’s capabilities in analyzing a marine data set from the Gulf of Suez. These examples provided a basis for discussing assumptions and limitations of NSRI.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. R553-R567 ◽  
Author(s):  
Xintao Chai ◽  
Genyang Tang ◽  
Fangfang Wang ◽  
Hanming Gu ◽  
Xinqiang Wang

Acoustic impedance (AI) inversion is of great interest because it extracts information regarding rock properties from seismic data and has successful applications in reservoir characterization. During wave propagation, anelastic attenuation and dispersion always occur because the subsurface is not perfectly elastic, thereby diminishing the seismic resolution. AI inversion based on the convolutional model requires that the input data be free of attenuation effects; otherwise, low-resolution results are inevitable. The intrinsic instability that occurs while compensating for the anelastic effects via inverse [Formula: see text] filtering is notorious. The gain-limit inverse [Formula: see text] filtering method cannot compensate for strongly attenuated high-frequency components. A nonstationary sparse reflectivity inversion (NSRI) method can estimate the reflectivity series from attenuated seismic data without the instability issue. Although AI is obtainable from an inverted reflectivity series through recursion, small inaccuracies in the reflectivity series can result in large perturbations in the AI result because of the cumulative effects. To address these issues, we have developed a [Formula: see text]-compensated AI inversion method that directly retrieves high-resolution AI from attenuated seismic data without prior inverse [Formula: see text] filtering based on the theory of NSRI and AI inversion. This approach circumvents the intrinsic instability of inverse [Formula: see text] filtering by integrating the [Formula: see text] filtering operator into the convolutional model and solving the inverse problem iteratively. This approach also avoids the ill-conditioned nature of the recursion scheme for transforming an inverted reflectivity series to AI. Experiments on a benchmark Marmousi2 model validate the feasibility and capabilities of our method. Applications to two field data sets verify that the inversion results generated by our approach are mostly consistent with the well logs.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. U67-U76 ◽  
Author(s):  
Robert J. Ferguson

The possibility of improving regularization/datuming of seismic data is investigated by treating wavefield extrapolation as an inversion problem. Weighted, damped least squares is then used to produce the regularized/datumed wavefield. Regularization/datuming is extremely costly because of computing the Hessian, so an efficient approximation is introduced. Approximation is achieved by computing a limited number of diagonals in the operators involved. Real and synthetic data examples demonstrate the utility of this approach. For synthetic data, regularization/datuming is demonstrated for large extrapolation distances using a highly irregular recording array. Without approximation, regularization/datuming returns a regularized wavefield with reduced operator artifacts when compared to a nonregularizing method such as generalized phase shift plus interpolation (PSPI). Approximate regularization/datuming returns a regularized wavefield for approximately two orders of magnitude less in cost; but it is dip limited, though in a controllable way, compared to the full method. The Foothills structural data set, a freely available data set from the Rocky Mountains of Canada, demonstrates application to real data. The data have highly irregular sampling along the shot coordinate, and they suffer from significant near-surface effects. Approximate regularization/datuming returns common receiver data that are superior in appearance compared to conventional datuming.


2014 ◽  
Vol 7 (3) ◽  
pp. 781-797 ◽  
Author(s):  
P. Paatero ◽  
S. Eberly ◽  
S. G. Brown ◽  
G. A. Norris

Abstract. The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement of factor elements (BS-DISP). The goal of these methods is to capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. It is shown that the three methods complement each other: depending on characteristics of the data set, one method may provide better results than the other two. Results are presented using synthetic data sets, including interpretation of diagnostics, and recommendations are given for parameters to report when documenting uncertainty estimates from EPA PMF or ME-2 applications.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C81-C92 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Hilde Grude Borgos ◽  
Martin Landrø

Effects of pressure and fluid saturation can have the same degree of impact on seismic amplitudes and differential traveltimes in the reservoir interval; thus, they are often inseparable by analysis of a single stacked seismic data set. In such cases, time-lapse AVO analysis offers an opportunity to discriminate between the two effects. We quantify the uncertainty in estimations to utilize information about pressure- and saturation-related changes in reservoir modeling and simulation. One way of analyzing uncertainties is to formulate the problem in a Bayesian framework. Here, the solution of the problem will be represented by a probability density function (PDF), providing estimations of uncertainties as well as direct estimations of the properties. A stochastic model for estimation of pressure and saturation changes from time-lapse seismic AVO data is investigated within a Bayesian framework. Well-known rock physical relationships are used to set up a prior stochastic model. PP reflection coefficient differences are used to establish a likelihood model for linking reservoir variables and time-lapse seismic data. The methodology incorporates correlation between different variables of the model as well as spatial dependencies for each of the variables. In addition, information about possible bottlenecks causing large uncertainties in the estimations can be identified through sensitivity analysis of the system. The method has been tested on 1D synthetic data and on field time-lapse seismic AVO data from the Gullfaks Field in the North Sea.


Author(s):  
Danlei Xu ◽  
Lan Du ◽  
Hongwei Liu ◽  
Penghui Wang

A Bayesian classifier for sparsity-promoting feature selection is developed in this paper, where a set of nonlinear mappings for the original data is performed as a pre-processing step. The linear classification model with such mappings from the original input space to a nonlinear transformation space can not only construct the nonlinear classification boundary, but also realize the feature selection for the original data. A zero-mean Gaussian prior with Gamma precision and a finite approximation of Beta process prior are used to promote sparsity in the utilization of features and nonlinear mappings in our model, respectively. We derive the Variational Bayesian (VB) inference algorithm for the proposed linear classifier. Experimental results based on the synthetic data set, measured radar data set, high-dimensional gene expression data set, and several benchmark data sets demonstrate the aggressive and robust feature selection capability and comparable classification accuracy of our method comparing with some other existing classifiers.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. M41-M48 ◽  
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali

The ideal approach for continuous reservoir monitoring allows generation of fast and accurate images to cope with the massive data sets acquired for such a task. Conventionally, rigorous depth-oriented velocity-estimation methods are performed to produce sufficiently accurate velocity models. Unlike the traditional way, the target-oriented imaging technology based on the common-focus point (CFP) theory can be an alternative for continuous reservoir monitoring. The solution is based on a robust data-driven iterative operator updating strategy without deriving a detailed velocity model. The same focusing operator is applied on successive 3D seismic data sets for the first time to generate efficient and accurate 4D target-oriented seismic stacked images from time-lapse field seismic data sets acquired in a [Formula: see text] injection project in Saudi Arabia. Using the focusing operator, target-oriented prestack angle domain common-image gathers (ADCIGs) could be derived to perform amplitude-versus-angle analysis. To preserve the amplitude information in the ADCIGs, an amplitude-balancing factor is applied by embedding a synthetic data set using the real acquisition geometry to remove the geometry imprint artifact. Applying the CFP-based target-oriented imaging to time-lapse data sets revealed changes at the reservoir level in the poststack and prestack time-lapse signals, which is consistent with the [Formula: see text] injection history and rock physics.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. E293-E299
Author(s):  
Jorlivan L. Correa ◽  
Paulo T. L. Menezes

Synthetic data provided by geoelectric earth models are a powerful tool to evaluate a priori a controlled-source electromagnetic (CSEM) workflow effectiveness. Marlim R3D (MR3D) is an open-source complex and realistic geoelectric model for CSEM simulations of the postsalt turbiditic reservoirs at the Brazilian offshore margin. We have developed a 3D CSEM finite-difference time-domain forward study to generate the full-azimuth CSEM data set for the MR3D earth model. To that end, we fabricated a full-azimuth survey with 45 towlines striking the north–south and east–west directions over a total of 500 receivers evenly spaced at 1 km intervals along the rugged seafloor of the MR3D model. To correctly represent the thin, disconnected, and complex geometries of the studied reservoirs, we have built a finely discretized mesh of [Formula: see text] cells leading to a large mesh with a total of approximately 90 million cells. We computed the six electromagnetic field components (Ex, Ey, Ez, Hx, Hy, and Hz) at six frequencies in the range of 0.125–1.25 Hz. In our efforts to mimic noise in real CSEM data, we summed to the data a multiplicative noise with a 1% standard deviation. Both CSEM data sets (noise free and noise added), with inline and broadside geometries, are distributed for research or commercial use, under the Creative Common License, at the Zenodo platform.


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. EN77-EN90 ◽  
Author(s):  
Paolo Bergamo ◽  
Laura Valentina Socco

Surface-wave (SW) techniques are mainly used to retrieve 1D velocity models and are therefore characterized by a 1D approach, which might prove unsatisfactory when relevant 2D effects are present in the investigated subsurface. In the case of sharp and sudden lateral heterogeneities in the subsurface, a strategy to tackle this limitation is to estimate the location of the discontinuities and to separately process seismic traces belonging to quasi-1D subsurface portions. We have addressed our attention to methods aimed at locating discontinuities by identifying anomalies in SW propagation and attenuation. The considered methods are the autospectrum computation and the attenuation analysis of Rayleigh waves (AARW). These methods were developed for purposes and/or scales of analysis that are different from those of this work, which aims at detecting and characterizing sharp subvertical discontinuities in the shallow subsurface. We applied both methods to two data sets, synthetic data from a finite-element method simulation and a field data set acquired over a fault system, both presenting an abrupt lateral variation perpendicularly crossing the acquisition line. We also extended the AARW method to the detection of sharp discontinuities from large and multifold data sets and we tested these novel procedures on the field case. The two methods are proven to be effective for the detection of the discontinuity, by portraying propagation phenomena linked to the presence of the heterogeneity, such as the interference between incident and reflected wavetrains, and energy concentration as well as subsequent decay at the fault location. The procedures we developed for the processing of multifold seismic data set showed to be reliable tools in locating and characterizing subvertical sharp heterogeneities.


Sign in / Sign up

Export Citation Format

Share Document