scholarly journals Crosshole seismic tomography with cross-firing geometry

Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. R139-R146 ◽  
Author(s):  
Ying Rao ◽  
Yanghua Wang ◽  
Shumin Chen ◽  
Jianmin Wang

We have developed a case study of crosshole seismic tomography with a cross-firing geometry in which seismic sources were placed in two vertical boreholes alternatingly and receiver arrays were placed in another vertical borehole. There are two crosshole seismic data sets in a conventional sense. These two data sets are used jointly in seismic tomography. Because the local sediment is dominated by periodic, flat, thin layers, there is seismic anisotropy with different velocities in the vertical and horizontal directions. The vertical transverse isotropy anisotropic effect is taken into account in inversion processing, which consists of three stages in sequence. First, isotropic traveltime tomography is used for estimating the maximum horizontal velocity. Then, anisotropic traveltime tomography is used to invert for the anisotropic parameter, which is the normalized difference between the maximum horizontal velocity and the maximum vertical velocity. Finally, anisotropic waveform tomography is implemented to refine the maximum horizontal velocity. The cross-firing acquisition geometry significantly improves the ray coverage and results in a relatively even distribution of the ray density in the study area between two boreholes. Consequently, joint inversion of two crosshole seismic data sets improves the resolution and increases the reliability of the velocity model reconstructed by tomography.

2020 ◽  
Vol 221 (3) ◽  
pp. 1542-1554 ◽  
Author(s):  
B C Root

SUMMARY Current seismic tomography models show a complex environment underneath the crust, corroborated by high-precision satellite gravity observations. Both data sets are used to independently explore the density structure of the upper mantle. However, combining these two data sets proves to be challenging. The gravity-data has an inherent insensitivity in the radial direction and seismic tomography has a heterogeneous data acquisition, resulting in smoothed tomography models with de-correlation between different models for the mid-to-small wavelength features. Therefore, this study aims to assess and quantify the effect of regularization on a seismic tomography model by exploiting the high lateral sensitivity of gravity data. Seismic tomography models, SL2013sv, SAVANI, SMEAN2 and S40RTS are compared to a gravity-based density model of the upper mantle. In order to obtain similar density solutions compared to the seismic-derived models, the gravity-based model needs to be smoothed with a Gaussian filter. Different smoothening characteristics are observed for the variety of seismic tomography models, relating to the regularization approach in the inversions. Various S40RTS models with similar seismic data but different regularization settings show that the smoothening effect is stronger with increasing regularization. The type of regularization has a dominant effect on the final tomography solution. To reduce the effect of regularization on the tomography models, an enhancement procedure is proposed. This enhancement should be performed within the spectral domain of the actual resolution of the seismic tomography model. The enhanced seismic tomography models show improved spatial correlation with each other and with the gravity-based model. The variation of the density anomalies have similar peak-to-peak magnitudes and clear correlation to geological structures. The resolvement of the spectral misalignment between tomographic models and gravity-based solutions is the first step in the improvement of multidata inversion studies of the upper mantle and benefit from the advantages in both data sets.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. R59-R67 ◽  
Author(s):  
Igor B. Morozov ◽  
Jinfeng Ma

The seismic-impedance inversion problem is underconstrained inherently and does not allow the use of rigorous joint inversion. In the absence of a true inverse, a reliable solution free from subjective parameters can be obtained by defining a set of physical constraints that should be satisfied by the resulting images. A method for constructing synthetic logs is proposed that explicitly and accurately satisfies (1) the convolutional equation, (2) time-depth constraints of the seismic data, (3) a background low-frequency model from logs or seismic/geologic interpretation, and (4) spectral amplitudes and geostatistical information from spatially interpolated well logs. The resulting synthetic log sections or volumes are interpretable in standard ways. Unlike broadly used joint-inversion algorithms, the method contains no subjectively selected user parameters, utilizes the log data more completely, and assesses intermediate results. The procedure is simple and tolerant to noise, and it leads to higher-resolution images. Separating the seismic and subseismic frequency bands also simplifies data processing for acoustic-impedance (AI) inversion. For example, zero-phase deconvolution and true-amplitude processing of seismic data are not required and are included automatically in this method. The approach is applicable to 2D and 3D data sets and to multiple pre- and poststack seismic attributes. It has been tested on inversions for AI and true-amplitude reflectivity using 2D synthetic and real-data examples.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. IM37-IM49 ◽  
Author(s):  
Sanyi Yuan ◽  
Jinghan Wang ◽  
Tao Liu ◽  
Tao Xie ◽  
Shangxu Wang

Phase information of seismic signals is sensitive to subsurface discontinuities. However, 1D phase attributes are not robust when dealing with noisy data. In addition, variations of seismic phase attributes with azimuth are seldom explored. To address these issues, we have developed 6D phase-difference attributes (PDAs) derived from azimuthal phase-frequency spectra. For the seismic volume of a certain azimuth and frequency, we first construct stacked phase traces at each common-depth point along a certain decomposed trending direction. Then, the 6D PDA is extracted by calculating the complex-valued covariance at a 6D phase space. The proposed method enables characterization of the subsurface discontinuities and indicates seismic anisotropy. Moreover, we provide one q-value attribute obtained by singular value decomposition to describe the variation intensity of PDA along different azimuths. Simulated and field wide-azimuth seismic data sets are used to illustrate the performance of the proposed 6D PDA and the derived q-value attribute. The results show that PDA at different frequencies can image various geologic features, including faults, fracture groups, and karst caves. Our field data example shows that PDA is able to discern the connectivity of karst caves using large-azimuth data. In addition, PDA along different azimuths and the q-value attribute provide a measurement of azimuthal variations, as well as the anisotropy. Our 6D PDA method can be used as a potential tool for wide-azimuth seismic data interpretation.


2016 ◽  
Vol 4 (2) ◽  
pp. SE51-SE61 ◽  
Author(s):  
Stephanie Tyiasning ◽  
Dennis Cooke

Theoretically, vertical fractures and stress can create horizontal transverse isotropy (HTI) anisotropy on 3D seismic data. Determining if seismic HTI anisotropy is caused by stress or fractures can be important for mapping and understanding reservoir quality, especially in unconventional reservoirs. Our study area was the Cooper Basin of Australia. The Cooper Basin is Australia’s largest onshore oil and gas producing basin that consists of shale gas, basin-centered tight gas, and deep coal play. The Cooper Basin has unusually high tectonic stress, with most reservoirs in a strike-slip stress regime, but the deepest reservoirs are interpreted to be currently in a reverse-fault stress regime. The seismic data from the Cooper Basin exhibit HTI anisotropy. Our main objective was to determine if the HTI anisotropy was stress induced or fracture induced. We have compared migration velocity anisotropy and amplitude variation with offset anisotropy extracted from a high-quality 3D survey with a “ground truth” of dipole sonic logs, borehole breakout, and fractures interpreted from image logs. We came to the conclusion that the HTI seismic anisotropy in our study area is likely stress induced.


2020 ◽  
Vol 222 (2) ◽  
pp. 1295-1315
Author(s):  
Naeim Mousavi ◽  
Javier Fullea

SUMMARY While the crustal structure across the Iranian plateau is fairly well constrained from controlled source and passive seismic data, the lithospheric mantle structure remains relatively poorly known, in particular in terms of lithology. Geodynamics rely on a robust image of the present-day thermochemical structure interpretations of the area. In this study, the 3-D crustal and upper mantle structure of the Iranian plateau is investigated, for the first time, through integrated geophysical–petrological modelling combining elevation, gravity and gravity gradient fields, seismic and petrological data. Our modelling approach allows us to simultaneously match complementary data sets with key mantle physical parameters (density and seismic velocities) being determined within a self-consistent thermodynamic framework. We first elaborate a new 3-D isostatically balanced crustal model constrained by available controlled source and passive seismic data, as well as complementary by gravity data. Next, we follow a progressively complex modelling strategy, starting from a laterally quasi chemically homogeneous model and then including structural, petrological and seismic tomography constraints. Distinct mantle compositions are tested in each of the tectonothermal terranes in our study region based on available local xenolith suites and global petrological data sets. Our preferred model matches the input geophysical observables (gravity field and elevation), includes local xenolith data, and qualitatively matches velocity anomalies from state of the art seismic tomography models. Beneath the Caspian and Oman seas (offshore areas) our model is defined by an average Phanerozoic fertile composition. The Arabian Plate and the Turan platform are characterized by a Proterozoic composition based on xenolith samples from eastern Arabia. In agreement with previous studies, our results also suggest a moderately refractory Proterozoic type composition in Zagros-Makran belt, extending to Alborz, Turan and Kopeh-Dagh terranes. In contrast, the mantle in our preferred model in Central Iran is defined by a fertile composition derived from a xenolith suite in northeast Iran. Our results indicate that the deepest Moho boundary is located beneath the high Zagros Mountains (∼65 km). The thinnest crust is found in the Oman Sea, Central Iran (Lut Block) and Talesh Mountains. A relatively deep Moho boundary is modelled in the Kopeh-Dagh Mountains, where Moho depth reaches to ∼55 km. The lithosphere is ∼280 km thick beneath the Persian Gulf (Arabian–Eurasian Plate boundary) and the Caspian Sea, thinning towards the Turan platform and the high Zagros. Beneath the Oman Sea, the base of the lithosphere is at ∼150 km depth, rising to ∼120 km beneath Central Iran, with the thinnest lithosphere (<100 km) being located beneath the northwest part of the Iranian plateau. We propose that the present-day lithosphere–asthenosphere topography is the result of the superposition of different geodynamic processes: (i) Arabia–Eurasia convergence lasting from mid Jurassic to recent and closure of Neo-Tethys ocean, (ii) reunification of Gondwanian fragments to form the Central Iran block and Iranian microcontinent, (iii) impingement of a small-scale convection and slab break-off beneath Central Iran commencing in the mid Eocene and (iv) refertilization of the lithospheric mantle beneath the Iranian microcontinent.


Geophysics ◽  
2004 ◽  
Vol 69 (4) ◽  
pp. 994-1004 ◽  
Author(s):  
Li‐Yun Fu

I propose a joint inversion scheme to integrate seismic data, well data, and geological knowledge for acoustic impedance estimation. I examine the problem of recovering acoustic impedance from band‐limited seismic data. Optimal estimation of impedance can be achieved by combined applications of model‐based and deconvolution‐based methods. I incorporate the Robinson seismic convolutional model (RSCM) into the Caianiello neural network for network mapping. The Caianiello neural network provides an efficient approach to decompose the seismic wavelet and its inverse. The joint inversion consists of four steps: (1) multistage seismic inverse wavelets (MSIW) extraction at the wells, (2) the deconvolution with MSIW for initial impedance estimation, (3) multistage seismic wavelets (MSW) extraction at the wells, and (4) the model‐based reconstruction of impedance with MSW for improving the initial impedance model. The Caianiello neural network offers two algorithms for the four‐step process: neural wavelet estimation and input signal reconstruction. The frequency‐domain implementation of the algorithms enables control of the inversion on different frequency scales and facilitates an understanding of reservoir behavior on different resolution scales. The test results show that, with well control, the joint inversion can significantly improve the spatial description of reservoirs in data sets involving complex continental deposits.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. D141-D157 ◽  
Author(s):  
M. Karaoulis ◽  
A. Revil ◽  
J. Zhang ◽  
D. D. Werkema

Time-lapse joint inversion of geophysical data is required to image the evolution of oil reservoirs during production and enhanced oil recovery, [Formula: see text] sequestration, geothermal fields during production, and to monitor the evolution of contaminant plumes. Joint inversion schemes reduce space-related artifacts in filtering out noise that is spatially uncorrelated, and time-lapse inversion algorithms reduce time-related artifacts in filtering out noise that is uncorrelated over time. There are several approaches that are possible to perform the joint inverse problem. In this work, we investigate the structural crossgradient (SCG) joint inversion approach and the crosspetrophysical (CP) approach, which are appropriate for time-lapse problems. In the first case, the inversion scheme looks for models with structural similarities. In the second case, we use a direct relationship between the geophysical parameters. Time-lapse inversion is performed with an actively time-constrained (ATC) approach. In this approach, the subsurface is defined as a space-time model. All the snapshots are inverted together assuming a regularization of the sequence of snapshots over time. First, we showed the advantage of combining the SCG or CP inversion approaches and the ATC inversion by using a synthetic problem corresponding to crosshole seismic and DC-resistivity data and piecewise constant resistivity and seismic velocity distributions. We also showed that the combined SCG/ATC approach reduces the presence of artifacts with respect to individual inversion of the resistivity and seismic data sets, as well as with respect to the joint inversion of both data sets at each time step. We also performed a synthetic study using a secondary oil recovery problem. The combined CP/ATC approach was successful in retrieving the position of the oil/water encroachment front.


2021 ◽  
Author(s):  
Adam Cygal ◽  
Michał Stefaniuk ◽  
Anna Kret

AbstractThis article presents the results of an integrated interpretation of measurements made using Audio-Magnetotellurics and Seismic Reflection geophysical methods. The obtained results were used to build an integrated geophysical model of shallow subsurface cover consisting of Cenozoic deposits, which then formed the basis for a detailed lithological and tectonic interpretation of deeper Mesozoic sediments. Such shallow covers, consisting mainly of glacial Pleistocene deposits, are typical for central and northern Poland. This investigation concentrated on delineating the accurate geometry of Obrzycko Cenozoic graben structure filled with loose deposits, as it was of great importance to the acquisition, processing and interpretation of seismic data that was to reveal the tectonic structure of the Cretaceous and Jurassic sediments which underly the study area. Previously, some problems with estimation of seismic static corrections over similar grabens filled with more recent, low-velocity deposits were encountered. Therefore, a novel approach to estimating the exact thickness of such shallow cover consisting of low-velocity deposits was applied in the presented investigation. The study shows that some alternative geophysical data sets (such as magnetotellurics) can be used to significantly improve the imaging of geological structure in areas where seismic data are very distorted or too noisy to be used alone


2018 ◽  
Vol 56 (1) ◽  
pp. 436-445 ◽  
Author(s):  
Tian Lan ◽  
Hai Liu ◽  
Na Liu ◽  
Jinghe Li ◽  
Feng Han ◽  
...  

2010 ◽  
Vol 70 (2) ◽  
pp. 93-102 ◽  
Author(s):  
Victor Infante ◽  
Luis A. Gallardo ◽  
Juan C. Montalvo-Arrieta ◽  
Ignacio Navarro de León

Sign in / Sign up

Export Citation Format

Share Document