Using cuttings to extract geomechanical properties along lateral wells in unconventional reservoirs

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. MR167-MR185 ◽  
Author(s):  
Romain Prioul ◽  
Richard Nolen-Hoeksema ◽  
MaryEllen Loan ◽  
Michael Herron ◽  
Ridvan Akkurt ◽  
...  

We have developed a method using measurements on drill cuttings as well as calibrated models to estimate anisotropic mechanical properties and stresses in unconventional reservoirs, when logs are not available in lateral wells. We measured mineralogy and organic matter on cuttings using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We described the methodology and illustrated it using two vertical control wells in the Vaca Muerta Formation, Argentina, and one lateral well drilled in the low-maturity oil-bearing reservoir. The method has two steps. First, using a vertical control well containing measurements from cuttings, a comprehensive logging suite, cores, and in situ stress tests, we define and calibrate four models: petrophysical, rock physics, dynamic-static elastic, and geomechanical. The petrophysical model provides petrophysical constituent volumes (mineralogy, organic matter, and fluids) from logs or DRIFTS inputs to the rock-physics model for calculating the dynamic anisotropic elastic moduli. The dynamic-static elastic and geomechanics models provide the relationships for computing static elastic properties and the minimum stress. Second, we acquire DRIFTS data on cuttings in the target lateral well and apply the four models for calculating stresses. We find that the method is successful for two reasons. First, the sonic-log-derived elastic moduli could be reconstructed accurately from the rock-physics model using input from petrophysical volumes from logs and DRIFTS data. A striking observation is that the elastic-property heterogeneity in those wells is explainable almost solely by compositional variations. Second, petrophysical volumes can be reconstructed by the petrophysical model and DRIFTS data. In the lateral well, we observed horizontal variations of mineralogy and organic matter, which controlled variations of elastic moduli and its anisotropy, and, in turn, affected partitioning of the gravitational and tectonic components in the minimum stress. This methodology promises accurate in situ stress estimates using cutting-based measurements and assessments of unconventional-reservoir heterogeneity.

2016 ◽  
Author(s):  
Wang Changsheng* ◽  
Shi Yujiang ◽  
Wang Daxing ◽  
Zhang Haitao

Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. MR111-MR119
Author(s):  
Uri Wollner ◽  
Jack P. Dvorkin

The elastic moduli of the mineral constituents of the rock matrix are among the principal inputs in all rock-physics velocity-porosity-mineralogy models. Published experimental data indicate that the elastic moduli for essentially any mineral vary. The ranges of these variations are especially wide for clay. The question addressed here is how to select, based on well data, concrete values for clay’s elastic constants where those for other minerals are fixed. The approach is to find a rock-physics model for zero-clay intervals and then adjust the clay’s constants to describe the intervals dominated by clay using the same model. We examine three data sets from clastic environments, each represented by three wells, where the selected constants for clay were different between the fields but stable within each field. These constants can then be used for seismic forward modeling and interpretation in a specific field away from well control and within a depth range represented in the wells. In essence, we introduce the concept of elastic mineral facies where we identify clay as a mineral with certain elastic moduli rather than by its chemical formula.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. D143-D150 ◽  
Author(s):  
Xinding Fang ◽  
Michael Fehler ◽  
Zhenya Zhu ◽  
Tianrun Chen ◽  
Stephen Brown ◽  
...  

Formation elastic properties near a borehole may be altered from their original state due to the stress concentration around the borehole. This could result in a biased estimation of formation properties but could provide a means to estimate in situ stress from sonic logging data. To properly account for the formation property alteration, we propose an iterative numerical approach to calculate stress-induced anisotropy around a borehole by combining a rock physics model and a finite-element method. We tested the validity and accuracy of our approach by comparing numerical results to laboratory measurements of the stress-strain relation of a sample of Berea sandstone, which contains a borehole and is subjected to a uniaxial stress loading. Our iterative approach converges very fast and can be applied to calculate the spatially varying stiffness tensor of the formation around a borehole for any given stress state.


Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. E9-E20 ◽  
Author(s):  
Erling Hugo Jensen ◽  
Charlotte Faust Andersen ◽  
Tor Arne Johansen

We have developed a procedure for estimating the effective elastic properties of various mixtures of smectite and kaolinite over a range of confining pressures, based on the individual effective elastic properties of pure porous smectite and kaolinite. Experimental data for the pure samples are used as input to various rock physics models, and the predictions are compared with experimental data for the mixed samples. We have evaluated three strategies for choosing the initial properties in various rock physics models: (1) input values have the same porosity, (2) input values have the same pressure, and (3) an average of (1) and (2). The best results are obtained when the elastic moduli of the two porous constituents are defined at the same pressure and when their volumetric fractions are adjusted based on different compaction rates with pressure. Furthermore, our strategy makes the modeling results less sensitive to the actual rock physics model. The method can help obtain the elastic properties of mixed unconsolidated clays as a function of mechanical compaction. The more common procedure for estimating effective elastic properties requires knowledge about volume fractions, elastic properties of individual constituents, and geometric details of the composition. However, these data are often uncertain, e.g., large variations in the mineral elastic properties of clays have been reported in the literature, which makes our procedure a viable alternative.


2021 ◽  
Author(s):  
Tom Bratton ◽  

Petrophysicists often find sonic velocities difficult to interpret, especially when choosing values for the mineral and fluid endpoints. This difficulty is always caused by stress sensitive formations where dipole sonic velocities vary with stress, even when the petrophysical properties are constant. The goal of this coupled workflow is to quantify the compositional influences of porosity, mineralogy, and fluids, while isolating and quantifying the geomechanical influence of stress. I first estimate the petrophysical properties using a standard multi-mineral petrophysical solver void of sonic inputs. This allows one to independently observe and quantify variations in both compressional and shear velocities with variations in petrophysical properties. I then normalize the sonic velocities to an idealized formation having compositional properties constant with depth by applying both matrix and fluid substitution algorithms. If these normalized velocities are constant with depth, then the formations are insensitive to stress, and I apply the standard petrophysical workflow using the measured sonic inputs. In addition, the standard geomechanical workflow that assumes linear elasticity is appropriate to estimate the in-situ stresses. However, if the normalized velocities vary with depth, the formations are sensitive to stress, which requires modifications to both the standard petrophysical and geomechanical workflows. Specifically, one must quantify and remove the velocity variations due to stress or else misinterpret velocity changes due to stress for changes in petrophysical properties. For formations sensitive to stress, I quantify the stress sensitivity by using the observed change in normalized velocity with depth with an estimate of the change in stress with depth. I then compute a second velocity normalization that quantifies and removes the acoustical sensitivity to stress in favor of a constant reference stress. I can now more accurately quantify the petrophysical properties by including the stress normalized velocities in the multi-mineral petrophysical solver. At this point in the workflow, there are two methods for quantifying the in-situ horizontal stress. The first method uses the velocities normalized to the constant reference stress to compute the dynamic elastic moduli. These dynamic elastic moduli are now appropriate to input into the standard geomechanical workflow. The second method uses the velocities normalized for the changing petrophysical properties, together with the stress sensitivity coefficients, to directly invert the velocities for the in-situ horizontal stresses. A comparison between the two methods supplies a consistency check. I emphasize both methods require in-situ horizontal stress calibration data for correct results. To clearly illustrate the workflow, this paper specifies the mathematical formulations with example calculations. This coupled workflow is novel because it highlights and clarifies improper assumptions while acknowledging the rock physics of stress sensitive formations. In the process, it improves the accuracy of both the derived petrophysical properties and geomechanical stresses.


Geophysics ◽  
2021 ◽  
pp. 1-43
Author(s):  
Dario Grana

Rock physics models are physical equations that map petrophysical properties into geophysical variables, such as elastic properties and density. These equations are generally used in quantitative log and seismic interpretation to estimate the properties of interest from measured well logs and seismic data. Such models are generally calibrated using core samples and well log data and result in accurate predictions of the unknown properties. Because the input data are often affected by measurement errors, the model predictions are often uncertain. Instead of applying rock physics models to deterministic measurements, I propose to apply the models to the probability density function of the measurements. This approach has been previously adopted in literature using Gaussian distributions, but for petrophysical properties of porous rocks, such as volumetric fractions of solid and fluid components, the standard probabilistic formulation based on Gaussian assumptions is not applicable due to the bounded nature of the properties, the multimodality, and the non-symmetric behavior. The proposed approach is based on the Kumaraswamy probability density function for continuous random variables, which allows modeling double bounded non-symmetric distributions and is analytically tractable, unlike the Beta or Dirichtlet distributions. I present a probabilistic rock physics model applied to double bounded continuous random variables distributed according to a Kumaraswamy distribution and derive the analytical solution of the posterior distribution of the rock physics model predictions. The method is illustrated for three rock physics models: Raymer’s equation, Dvorkin’s stiff sand model, and Kuster-Toksoz inclusion model.


2021 ◽  
pp. 1-59
Author(s):  
Kai Lin ◽  
Xilei He ◽  
Bo Zhang ◽  
Xiaotao Wen ◽  
Zhenhua He ◽  
...  

Most of current 3D reservoir’s porosity estimation methods are based on analyzing the elastic parameters inverted from seismic data. It is well-known that elastic parameters vary with pore structure parameters such as pore aspect ratio, consolidate coefficient, critical porosity, etc. Thus, we may obtain inaccurate 3D porosity estimation if the chosen rock physics model fails properly address the effects of pore structure parameters on the elastic parameters. However, most of current rock physics models only consider one pore structure parameter such as pore aspect ratio or consolidation coefficient. To consider the effect of multiple pore structure parameters on the elastic parameters, we propose a comprehensive pore structure (CPS) parameter set that is generalized from the current popular rock physics models. The new CPS set is based on the first order approximation of current rock physics models that consider the effect of pore aspect ratio on elastic parameters. The new CPS set can accurately simulate the behavior of current rock physics models that consider the effect of pore structure parameters on elastic parameters. To demonstrate the effectiveness of proposed parameters in porosity estimation, we use a theoretical model to demonstrate that the proposed CPS parameter set properly addresses the effect of pore aspect ratio on elastic parameters such as velocity and porosity. Then, we obtain a 3D porosity estimation for a tight sand reservoir by applying it seismic data. We also predict the porosity of the tight sand reservoir by using neural network algorithm and a rock physics model that is commonly used in porosity estimation. The comparison demonstrates that predicted porosity has higher correlation with the porosity logs at the blind well locations.


2010 ◽  
Vol 75 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Takao Inamori ◽  
Masami Hato ◽  
Kiyofumi Suzuki ◽  
Tatsuo Saeki

Sign in / Sign up

Export Citation Format

Share Document