A COUPLED PETROPHYSICAL AND GEOMECHANICAL WORKFLOW TO INTERPRET DIPOLE SONIC VELOCITIES FOR IN-SITU STRESS

2021 ◽  
Author(s):  
Tom Bratton ◽  

Petrophysicists often find sonic velocities difficult to interpret, especially when choosing values for the mineral and fluid endpoints. This difficulty is always caused by stress sensitive formations where dipole sonic velocities vary with stress, even when the petrophysical properties are constant. The goal of this coupled workflow is to quantify the compositional influences of porosity, mineralogy, and fluids, while isolating and quantifying the geomechanical influence of stress. I first estimate the petrophysical properties using a standard multi-mineral petrophysical solver void of sonic inputs. This allows one to independently observe and quantify variations in both compressional and shear velocities with variations in petrophysical properties. I then normalize the sonic velocities to an idealized formation having compositional properties constant with depth by applying both matrix and fluid substitution algorithms. If these normalized velocities are constant with depth, then the formations are insensitive to stress, and I apply the standard petrophysical workflow using the measured sonic inputs. In addition, the standard geomechanical workflow that assumes linear elasticity is appropriate to estimate the in-situ stresses. However, if the normalized velocities vary with depth, the formations are sensitive to stress, which requires modifications to both the standard petrophysical and geomechanical workflows. Specifically, one must quantify and remove the velocity variations due to stress or else misinterpret velocity changes due to stress for changes in petrophysical properties. For formations sensitive to stress, I quantify the stress sensitivity by using the observed change in normalized velocity with depth with an estimate of the change in stress with depth. I then compute a second velocity normalization that quantifies and removes the acoustical sensitivity to stress in favor of a constant reference stress. I can now more accurately quantify the petrophysical properties by including the stress normalized velocities in the multi-mineral petrophysical solver. At this point in the workflow, there are two methods for quantifying the in-situ horizontal stress. The first method uses the velocities normalized to the constant reference stress to compute the dynamic elastic moduli. These dynamic elastic moduli are now appropriate to input into the standard geomechanical workflow. The second method uses the velocities normalized for the changing petrophysical properties, together with the stress sensitivity coefficients, to directly invert the velocities for the in-situ horizontal stresses. A comparison between the two methods supplies a consistency check. I emphasize both methods require in-situ horizontal stress calibration data for correct results. To clearly illustrate the workflow, this paper specifies the mathematical formulations with example calculations. This coupled workflow is novel because it highlights and clarifies improper assumptions while acknowledging the rock physics of stress sensitive formations. In the process, it improves the accuracy of both the derived petrophysical properties and geomechanical stresses.

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. MR167-MR185 ◽  
Author(s):  
Romain Prioul ◽  
Richard Nolen-Hoeksema ◽  
MaryEllen Loan ◽  
Michael Herron ◽  
Ridvan Akkurt ◽  
...  

We have developed a method using measurements on drill cuttings as well as calibrated models to estimate anisotropic mechanical properties and stresses in unconventional reservoirs, when logs are not available in lateral wells. We measured mineralogy and organic matter on cuttings using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We described the methodology and illustrated it using two vertical control wells in the Vaca Muerta Formation, Argentina, and one lateral well drilled in the low-maturity oil-bearing reservoir. The method has two steps. First, using a vertical control well containing measurements from cuttings, a comprehensive logging suite, cores, and in situ stress tests, we define and calibrate four models: petrophysical, rock physics, dynamic-static elastic, and geomechanical. The petrophysical model provides petrophysical constituent volumes (mineralogy, organic matter, and fluids) from logs or DRIFTS inputs to the rock-physics model for calculating the dynamic anisotropic elastic moduli. The dynamic-static elastic and geomechanics models provide the relationships for computing static elastic properties and the minimum stress. Second, we acquire DRIFTS data on cuttings in the target lateral well and apply the four models for calculating stresses. We find that the method is successful for two reasons. First, the sonic-log-derived elastic moduli could be reconstructed accurately from the rock-physics model using input from petrophysical volumes from logs and DRIFTS data. A striking observation is that the elastic-property heterogeneity in those wells is explainable almost solely by compositional variations. Second, petrophysical volumes can be reconstructed by the petrophysical model and DRIFTS data. In the lateral well, we observed horizontal variations of mineralogy and organic matter, which controlled variations of elastic moduli and its anisotropy, and, in turn, affected partitioning of the gravitational and tectonic components in the minimum stress. This methodology promises accurate in situ stress estimates using cutting-based measurements and assessments of unconventional-reservoir heterogeneity.


2012 ◽  
Vol 616-618 ◽  
pp. 538-542 ◽  
Author(s):  
Fu Xiang Zhang ◽  
Wei Feng Ge ◽  
Xiang Tong Yang ◽  
Wei Zhang ◽  
Jian Xin Peng

To alleviate the problems of casing collapse induced by the coupling effect of rock salt creep and casing wear, the effects of salt creep, attrition rate and casing abrasive position on the equivalent stress on casings in non-uniform in-situ stress field is analyzed by finite-difference model with worn casing, cement and salt formation. It indicates that, creep reduces the yield strength of worn casing to a certain extent; Equivalent stress on casings is bigger and more non-uniform when the abrasion is more serious; Wear position obviously changes the distribution of equivalent stress on casing, and when the wear located along the direction of the minimum in-situ stress, equivalent stress on casing could be the largest that leads to the casing being failed more easily. Equivalent stress on casings increases gradually with creep time increasing and will get to balance in one year or so; In addition, new conclusions are obtained which are different from before: the maximum equivalent stress on casings is in the direction of the minimum horizontal stress, only when the attrition rate of the casing is little; otherwise, it is not. This method could help to improve the wear prediction and design of casings.


2021 ◽  
Author(s):  
Jiaying Li ◽  
Chunyan Qi ◽  
Ye Gu ◽  
Yu Ye ◽  
Jie Zhao

Abstract The characteristics of seepage capability and rock strain during reservoir depletion are important for reservoir recovery, which would significantly influence production strategy optimization. The Cretaceous deep natural gas reservoirs in Keshen Gasfield in Tarim Basin are mainly buried over 5000 m, featuring with ultra-low permeability, developed natural fractures and complex in-situ stress states. However, there is no comprehensive study on the variation of mechanical properties and seepage capability of this gas reservoir under in-situ stress conditions and most studies on stress-sensitivity are conducted under conventional triaxial or uniaxial stress conditions, which cannot truly represent in-situ stress environment. In this work, Cretaceous tight sandstone in Keshen Gasfield was tested under true-triaxial stresses conditions by an advanced geophysical imaging true-triaxial testing system to study the stress-sensitivity and anisotropy of rock stress-strain behavior, porosity and permeability. Four groups of sandstone samples are prepared as the size of 80mm×80mm×80mm, three of which are artificially fractured with different angle (0°,15°,30°) to simulate hydraulic fracturing. The test results corresponding to different samples are compared to further reveal the influence of the fracture angle on rock mechanical properties and seepage capability. The samples are in elastic strain during reservoir depletion, showing an apparent correlation with fracture angles. The porosity decreases linearly with stress loading, where the decrease rate of effective porosity of fracture samples is significantly higher than that of intact samples. The permeabilities decrease exponentially and show significant anisotropy in different principal stress directions, especially in σH direction. The mechanical properties and seepage capability of deep tight sandstone are successfully tested under true-triaxial stresses conditions in this work, which reveals the stress-sensitivity of anisotropic permeability, porosity and stress-strain behavior during gas production. The testing results proposed in this paper provides an innovative method to analyse rock mechanical and petrophysical properties and has profound significance on exploration and development of tight gas reservoir.


2014 ◽  
Vol 501-504 ◽  
pp. 1766-1773
Author(s):  
Lin Hai Bao

Gaoligong Mountain tunnel is the key project in the Dali-Ruili Railway. In order to optimize the design and guide construction, In-situ stress has been conducted in five boreholes using hydraulic fracturing method, the current shallow crustal in-situ stress state at the project area are obtained according to the measurements results, and deep in-situ stress is predicted using lateral pressure coefficient. The test results show that at depths ranging from 299-979m, the maximum horizontal principal stress is 5.33-30.12Mpa, the minimum horizontal principal stress is 4.94-23.11Mpa, the horizontal principal stress reach 30Mpa at maximum the depth of burial, indicating that the engineering stress filed is dominated by horizontal stress. Based on the In-situ stress data and different distinguish methods, rockburst and large deformation are predicted. The results show that In-situ stress magnitude in this area is classified as high level, and the direction of the maximum horizontal stress is NEE, In-situ stress orientation is conductive to stable of the tunnel. When the tunnel passes through the deep-burial and hard rock, the wall rock may happen rockburst; and the large deformation may happen when the tunnel pass through the weak rock. In order to avoid the disadvantage conditions, reasonable excavation method and safety support method should be adopted during tunnel excavating.


1991 ◽  
Vol 28 (5) ◽  
pp. 650-659 ◽  
Author(s):  
Vinod K. Garga ◽  
Mahbubul A. Khan

Most of the laboratory testing methods available for the evaluation of in situ horizontal stresses are applicable to normally consolidated or lightly overconsolidated clays. This paper describes a new laboratory method for the determination of in situ horizontal stresses of heavily overconsolidated clays using a stress-path triaxial apparatus. The proposed method is based on the concept that if the radial stress exceeds the in situ horizontal stress, while maintaining the axial stress constant and equal to the in situ vertical effective stress, only then will the sample experience significant axial strain. The results obtained for undisturbed samples of an overconsolidated clay crust are found to be in agreement with some available methods. For verification of the applicability of the proposed method, K0 was determined for artificially prepared samples that had been subjected to known stress paths simulating field stress history. Key words: K0, overconsolidation, in situ stress, in situ test, clay crust, laboratory test.


2011 ◽  
Vol 317-319 ◽  
pp. 2432-2435
Author(s):  
Yu Xue Sun ◽  
Fei Yao ◽  
Jing Yuan Zhao

In the process of low-permeability sandstone reservoir exploitation, stress sensitivity takes place with the effective stress rises gradually, which will cause permeability decline. Allowing to the condition of in-situ stress, the study and experiment on the rock core in Jilin oil field Fuxin326 oil layer are presented. The experimental results show that the stress sensitivity of this oil layer is small; the regularity of permeability changes is in accordance with exponential function. The stress sensitivity of high permeability core is larger than that of low permeability core. Moreover, experimental and theoretical analysis shows that low permeability core has a larger permeability loss than high permeability core in loading and unloading process where elastic plastic deformation of rock will happen, which is the major reason that permeability loss can not return completely.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yushuai Zhang ◽  
Shangxian Yin ◽  
Jincai Zhang

Methods for determining in situ stresses are reviewed, and a new approach is proposed for a better prediction of the in situ stresses. For theoretically calculating horizontal stresses, horizontal strains are needed; however, these strains are very difficult to be obtained. Alternative methods are presented in this paper to allow an easier way for determining horizontal stresses. The uniaxial strain method is oversimplified for the minimum horizontal stress determination; however, it is the lower bound minimum horizontal stress. Based on this concept, a modified stress polygon method is proposed to obtain the minimum and maximum horizontal stresses. This new stress polygon is easier to implement and is more accurate to determine in situ stresses by narrowing the area of the conventional stress polygon when drilling-induced tensile fracture and wellbore breakout data are available. Using the generalized Hooke’s law and coupling pore pressure and in situ stresses, a new method for estimating the maximum horizontal stress is proposed. Combined it to the stress polygon method, a reliable in situ stress estimation can be obtained. The field measurement method, such as minifrac test, is also analyzed in different stress regimes to determine horizontal stress magnitudes and calibrate the proposed theoretical method. The proposed workflow combined theoretical methods to field measurements provides an integrated approach for horizontal stress estimation.


2021 ◽  
Vol 4 (2) ◽  
pp. p1
Author(s):  
Dyson Moses ◽  
Hideki Shimada ◽  
Takashi Sasaoka ◽  
Akihiro Hamanaka ◽  
Tumelo K. M Dintwe ◽  
...  

The investigation of the influence of in situ stress in Open Pit Mine (OPM) projects has not been accorded a deserved attention despite being a fundamental concern in the design of underground excavations. Hence, its long-term potential adverse impacts on pit slope performance are overly undermined. Nevertheless, in mines located in tectonically active settings with a potential high horizontal stress regime like the Songwe mine, the impact could be considerable. Thus, Using FLAC3D 5.0 software, based on Finite Difference Method (FDM) code, we assessed the role of stress regimes as a potential triggering factor for slope instability in Songwe mine. The results of the evaluated shearing contours and quantified strain rate and displacement values reveal that high horizontal stress can reduce the stability performance of the pit-wall in spite of the minimal change in Factor of Safety (FoS). Since mining projects have a long life span, it would be recommendable to consider “in situ stress-stability analyses” for OPM operations that would be planned to extend to greater depths and those located in tectonically active regions.


Sign in / Sign up

Export Citation Format

Share Document