pore structure parameter
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
pp. 1-59
Author(s):  
Kai Lin ◽  
Xilei He ◽  
Bo Zhang ◽  
Xiaotao Wen ◽  
Zhenhua He ◽  
...  

Most of current 3D reservoir’s porosity estimation methods are based on analyzing the elastic parameters inverted from seismic data. It is well-known that elastic parameters vary with pore structure parameters such as pore aspect ratio, consolidate coefficient, critical porosity, etc. Thus, we may obtain inaccurate 3D porosity estimation if the chosen rock physics model fails properly address the effects of pore structure parameters on the elastic parameters. However, most of current rock physics models only consider one pore structure parameter such as pore aspect ratio or consolidation coefficient. To consider the effect of multiple pore structure parameters on the elastic parameters, we propose a comprehensive pore structure (CPS) parameter set that is generalized from the current popular rock physics models. The new CPS set is based on the first order approximation of current rock physics models that consider the effect of pore aspect ratio on elastic parameters. The new CPS set can accurately simulate the behavior of current rock physics models that consider the effect of pore structure parameters on elastic parameters. To demonstrate the effectiveness of proposed parameters in porosity estimation, we use a theoretical model to demonstrate that the proposed CPS parameter set properly addresses the effect of pore aspect ratio on elastic parameters such as velocity and porosity. Then, we obtain a 3D porosity estimation for a tight sand reservoir by applying it seismic data. We also predict the porosity of the tight sand reservoir by using neural network algorithm and a rock physics model that is commonly used in porosity estimation. The comparison demonstrates that predicted porosity has higher correlation with the porosity logs at the blind well locations.


NANO ◽  
2019 ◽  
Vol 14 (08) ◽  
pp. 1950100
Author(s):  
Wenpu Zhao ◽  
Weiqiu Huang ◽  
Manlin Li ◽  
Zhoulan Huang

MIL-101(Cr)/AC was synthesized by in situ incorporation of activated carbon powder via hydrothermal method. The water stability, n-hexane adsorption and regeneration of the MIL-101(Cr)/AC were experimentally measured. The results showed that the MIL-101(Cr)/AC exhibited the larger surface area (3319.3[Formula: see text]m2/g) than that of MIL-101(Cr) and AC, respectively. The addition of activated carbon was beneficial to improve the yield of MIL-101(Cr)/AC. The pore structure parameter and XRD of the MIL-101(Cr)/AC changed little after in water for 24[Formula: see text]h. Furthermore, the adsorption capacity of MIL-101(Cr)/AC for n-hexane was 786[Formula: see text]mg/g, which increased to 23.0% and 27.7% compared with MIL-101(Cr) and AC, respectively. Kinetic fitting of data indicated that the pseudo-first order model can more accurately describe the adsorption process of n-hexane on MIL-101(Cr)/AC and the intraparticle diffusion was not the sole rate-controlling step. Besides, the regeneration efficiency of MIL-101(Cr)/AC was over 92% after 10 consecutive n-hexane adsorption/desorption cycles.


2018 ◽  
Vol 6 (4) ◽  
pp. SM1-SM8 ◽  
Author(s):  
Tingting Zhang ◽  
Yuefeng Sun

Fractured zones in deeply buried carbonate hills are important because they often have better permeability resulting in prolific production than similar low-porosity rocks. Nevertheless, their detection poses great challenge to conventional seismic inversion methods because they are mostly low in acoustic impedance and bulk modulus, hardly distinguishable from high-porosity zones or mudstones. A proxy parameter of pore structure defined in a rock-physics model, the so-called Sun model, has been used for delineating fractured zones in which the pore structure parameter is relatively high, whereas the porosity is low in general. Simultaneous seismic inversion of the pore structure parameter and porosity proves to be difficult and nontrivial in practice. Although the pore structure parameter is well-defined at locations where density, P-, and S-velocity are known from logs, estimation of P- and S-velocity information, especially density information from prestack seismic data is rather challenging. A three-step iterative inversion method, which uses acoustic, gradient, and elastic impedance from angle-stacked seismic data as input to the rock-physics model for calculating porosity and bulk and shear pore structure parameters simultaneously, is proposed and implemented to solve this problem. The methodology is successfully tested with well logs and seismic data from a deeply buried carbonate hill in the Bohai Bay Basin, China.


2018 ◽  
Vol 6 (4) ◽  
pp. SM9-SM17 ◽  
Author(s):  
Tingting Zhang ◽  
Ruifeng Zhang ◽  
Jianzhang Tian ◽  
Lifei Lu ◽  
Fengqi Qin ◽  
...  

Fractures and fracture-related dissolution pores, as well as cavities, molds, and vugs, provide the major conduit and/or storage space for hydrocarbons in the deeply buried carbonate hill of Hexiwu field, Bohai Bay Basin. The fractured reservoir generally has lower porosity but better permeability than moldic/vuggy reservoir, and it consists of the major part of the buried-hill slope and buried-hill internal reservoirs. The conventional method of characterizing carbonate reservoirs, however, often mixes these two types of reservoirs together because they both have low acoustic impedance and low bulk modulus. The rock-physics analysis of two field wells indicates that a pore-structure parameter defined in a rock-physics model, the so-called Sun model, can help to distinguish the fractured reservoir zones together with porosity. Fractured zones usually have porosity of less than 5% and a pore-structure parameter of greater than six, whereas moldic/vuggy reservoirs of higher porosity have a pore-structure parameter of less than six. Field-scale application demonstrates that simultaneous prestack seismic inversion for the porosity and pore-structure parameter enables 3D mapping of fractured reservoir zones in the buried carbonate hills. It also provides an analog of detecting fractures and/or fracture-related pores in deeply buried carbonates in similar geologic settings.


2012 ◽  
Vol 2290 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Narayanan Neithalath ◽  
Hieu T. Cam

The use of a coarse limestone powder (median particle size of approximately 70 μm, five times larger than cement particles) as a cement replacement material results in a dilution effect. The magnitude of strength and transport property reduction is found to be greater than the magnitude of the cement replacement level. In this paper, methodologies to proportion concrete containing 10% to 15% of coarse limestone powder, in which the dilution effect is compensated through a combination of reduction in water-to-powder ratio and addition of 5% of silica fume, are discussed. Limestone–silica fume blended concretes at a reduced water-to-powder ratio (0.37 or 0.34, depending on limestone replacement level) show similar or higher 56-day compressive strengths than does the benchmark plain concrete with a water-to-cement ratio of 0.40. The rapid chloride permeability and non–steady state migration values of the modified concretes are evaluated along with their pore structure parameter extracted from electrical impedance data. The impact of water-to-powder reduction and silica fume incorporation is quantified through this pore structure parameter.


Sign in / Sign up

Export Citation Format

Share Document