Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model

Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R149-R164 ◽  
Author(s):  
Sanyi Yuan ◽  
Shangxu Wang ◽  
Yaneng Luo ◽  
Wanwan Wei ◽  
Guanchao Wang

Prestack acoustic full-waveform inversion (FWI) can provide long-wavelength components of the P-wave velocity by using low frequencies and long-offset direct/diving/refracted waves, which could be simulated via a large space grid, and it is weakly sensitive to density. Poststack impedance inversion can usually quickly yield high-resolution impedance, and it is sensitive to density. Therefore, we have combined these two methods to develop an FWI-driven impedance inversion. Our method first uses FWI to obtain the long-wavelength velocity with a guaranteed overlap between the high frequencies of the velocity and the low frequencies of the poststack data. Then, the fitting rock-physics relationship between the density and the velocity is adopted to translate the FWI velocity into the low-frequency impedance. Finally, the resulting low-frequency impedance is used to construct an a priori constraint for poststack impedance inversion. The method has the ability to solve the overlap between the FWI-based converted prior impedance model and poststack data, and it can thereby yield a broadband absolute impedance result. We adopt a Marmousi II model example and a real data case to test the performances of the FWI-driven impedance inversion and indicate its advantages compared with the conventional well-driven impedance inversion that uses well logs and interpreted horizons to build the prior impedance model. The synthetic data example demonstrates that well-driven impedance inversion produces a result with a relatively large deviation to the true impedance model at complex structure zones. However, FWI-driven impedance inversion favorably recovers all interesting sediment layers at complex structure zones. The real data example illustrates that well-driven impedance inversion yields a result with a distinct footprint of the prior model created from well logs and horizons. On the other hand, we find that FWI-driven impedance inversion yields a geologically reasonable solution, which not only conforms to the time-space variation trend of the well logs, but it also reveals a basin structural-depositional evolution.

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. R449-R461 ◽  
Author(s):  
Guanghui Huang ◽  
Rami Nammour ◽  
William W. Symes

Source signature estimation from seismic data is a crucial ingredient for successful application of seismic migration and full-waveform inversion (FWI). If the starting velocity deviates from the target velocity, FWI method with on-the-fly source estimation may fail due to the cycle-skipping problem. We have developed a source-based extended waveform inversion method, by introducing additional parameters in the source function, to solve the FWI problem without the source signature as a priori. Specifically, we allow the point source function to be dependent on spatial and time variables. In this way, we can easily construct an extended source function to fit the recorded data by solving a source matching subproblem; hence, it is less prone to cycle skipping. A novel source focusing annihilator, defined as the distance function from the real source position, is used for penalizing the defocused energy in the extended source function. A close data fit avoiding the cycle-skipping problem effectively makes the new method less likely to suffer from local minima, which does not require extreme low-frequency signals in the data. Numerical experiments confirm that our method can mitigate cycle skipping in FWI and is robust against random noise.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R989-R1001 ◽  
Author(s):  
Oleg Ovcharenko ◽  
Vladimir Kazei ◽  
Mahesh Kalita ◽  
Daniel Peter ◽  
Tariq Alkhalifah

Low-frequency seismic data are crucial for convergence of full-waveform inversion (FWI) to reliable subsurface properties. However, it is challenging to acquire field data with an appropriate signal-to-noise ratio in the low-frequency part of the spectrum. We have extrapolated low-frequency data from the respective higher frequency components of the seismic wavefield by using deep learning. Through wavenumber analysis, we find that extrapolation per shot gather has broader applicability than per-trace extrapolation. We numerically simulate marine seismic surveys for random subsurface models and train a deep convolutional neural network to derive a mapping between high and low frequencies. The trained network is then tested on sections from the BP and SEAM Phase I benchmark models. Our results indicate that we are able to recover 0.25 Hz data from the 2 to 4.5 Hz frequencies. We also determine that the extrapolated data are accurate enough for FWI application.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R77-R88 ◽  
Author(s):  
Yunseok Choi ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We have applied an exponential damping to the data to generate artificial low frequencies, which helps FWI to avoid cycle skipping. In this case, the least-squares misfit function does not properly deal with the exponentially damped wavefield in FWI because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data; thus, it can address the unbalanced amplitude of a damped wavefield. We specifically normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples indicate that our FWI algorithm generates a convergent long-wavelength structure without low-frequency information in the recorded data.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. R339-R348 ◽  
Author(s):  
Yunyue Elita Li ◽  
Laurent Demanet

The availability of low-frequency data is an important factor in the success of full-waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data less than 2 or 3 Hz from the field is a challenging and expensive task. We have explored the possibility of synthesizing the low frequencies computationally from high-frequency data and used the resulting prediction of the missing data to seed the frequency sweep of FWI. As a signal-processing problem, bandwidth extension is a very nonlinear and delicate operation. In all but the simplest of scenarios, it can only be expected to lead to plausible recovery of the low frequencies, rather than their accurate reconstruction. Even so, it still requires a high-level interpretation of band-limited seismic records into individual events, each of which can be extrapolated to a lower (or higher) frequency band from the nondispersive nature of the wave-propagation model. We have used the phase-tracking method for the event separation task. The fidelity of the resulting extrapolation method is typically higher in phase than in amplitude. To demonstrate the reliability of bandwidth extension in the context of FWI, we first used the low frequencies in the extrapolated band as data substitute, to create the low-wavenumber background velocity model, and then we switched to recorded data in the available band for the rest of the iterations. The resulting method, extrapolated FWI, demonstrated surprising robustness to the inaccuracies in the extrapolated low-frequency data. With two synthetic examples calibrated so that regular FWI needs to be initialized at 1 Hz to avoid local minima, we have determined that FWI based on an extrapolated [1, 5] Hz band, itself generated from data available in the [5, 15] Hz band, can produce reasonable estimations of the low-wavenumber velocity models.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R117-R127 ◽  
Author(s):  
Yuanyuan Li ◽  
Yunseok Choi ◽  
Tariq Alkhalifah ◽  
Zhenchun Li ◽  
Kai Zhang

Conventional full-waveform inversion (FWI) based on the least-squares misfit function faces problems in converging to the global minimum when using gradient methods because of the cycle-skipping phenomena. An initial model producing data that are at most a half-cycle away from the observed data is needed for convergence to the global minimum. Low frequencies are helpful in updating low-wavenumber components of the velocity model to avoid cycle skipping. However, low enough frequencies are usually unavailable in field cases. The multiplication of wavefields of slightly different frequencies adds artificial low-frequency components in the data, which can be used for FWI to generate a convergent result and avoid cycle skipping. We generalize this process by multiplying the wavefield with itself and then applying a smoothing operator to the multiplied wavefield or its square to derive the nonlinearly smoothed wavefield, which is rich in low frequencies. The global correlation-norm-based objective function can mitigate the dependence on the amplitude information of the nonlinearly smoothed wavefield. Therefore, we have evaluated the use of this objective function when using the nonlinearly smoothed wavefield. The proposed objective function has much larger convexity than the conventional objective functions. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to that of the conventional FWI except for the adjoint source. We progressively reduce the smoothing width applied to the nonlinear wavefield to naturally adopt the multiscale strategy. Using examples on the Marmousi 2 model, we determine that the proposed FWI helps to generate convergent results without the need for low-frequency information.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. R117-R127 ◽  
Author(s):  
Antoine Guitton ◽  
Gboyega Ayeni ◽  
Esteban Díaz

The waveform inversion problem is inherently ill-posed. Traditionally, regularization schemes are used to address this issue. For waveform inversion, where the model is expected to have many details reflecting the physical properties of the Earth, regularization and data fitting can work in opposite directions: the former smoothing and the latter adding details to the model. We propose constraining estimated velocity fields by reparameterizing the model. This technique, also called model-space preconditioning, is based on directional Laplacian filters: It preserves most of the details of the velocity model while smoothing the solution along known geological dips. Preconditioning also yields faster convergence at early iterations. The Laplacian filters have the property to smooth or kill local planar events according to a local dip field. By construction, these filters can be inverted and used in a preconditioned waveform inversion strategy to yield geologically meaningful models. We illustrate with 2D synthetic and field data examples how preconditioning with nonstationary directional Laplacian filters outperforms traditional waveform inversion when sparse data are inverted and when sharp velocity contrasts are present. Adding geological information with preconditioning could benefit full-waveform inversion of real data whenever irregular geometry, coherent noise and lack of low frequencies are present.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R275-R288 ◽  
Author(s):  
Hongyu Sun ◽  
Laurent Demanet

The lack of low-frequency information and a good initial model can seriously affect the success of full-waveform inversion (FWI), due to the inherent cycle skipping problem. Computational low-frequency extrapolation is in principle the most direct way to address this issue. By considering bandwidth extension as a regression problem in machine learning, we have adopted an architecture of convolutional neural network (CNN) to automatically extrapolate the missing low frequencies. The band-limited recordings are the inputs of the CNN, and, in our numerical experiments, a neural network trained from enough samples can predict a reasonable approximation to the seismograms in the unobserved low-frequency band, in phase and in amplitude. The numerical experiments considered are set up on simulated P-wave data. In extrapolated FWI (EFWI), the low-wavenumber components of the model are determined from the extrapolated low frequencies, before proceeding with a frequency sweep of the band-limited data. The introduced deep-learning method of low-frequency extrapolation shows adequate generalizability for the initialization step of EFWI. Numerical examples show that the neural network trained on several submodels of the Marmousi model is able to predict the low frequencies for the BP 2004 benchmark model. Additionally, the neural network can robustly process seismic data with uncertainties due to the existence of random noise, a poorly known source wavelet, and a different finite-difference scheme in the forward modeling operator. Finally, this approach is not subject to strong assumptions on signals or velocity models of other methods for bandwidth extension and seems to offer a tantalizing solution to the problem of properly initializing FWI.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCC1-WCC26 ◽  
Author(s):  
J. Virieux ◽  
S. Operto

Full-waveform inversion (FWI) is a challenging data-fitting procedure based on full-wavefield modeling to extract quantitative information from seismograms. High-resolution imaging at half the propagated wavelength is expected. Recent advances in high-performance computing and multifold/multicomponent wide-aperture and wide-azimuth acquisitions make 3D acoustic FWI feasible today. Key ingredients of FWI are an efficient forward-modeling engine and a local differential approach, in which the gradient and the Hessian operators are efficiently estimated. Local optimization does not, however, prevent convergence of the misfit function toward local minima because of the limited accuracy of the starting model, the lack of low frequencies, the presence of noise, and the approximate modeling of thewave-physics complexity. Different hierarchical multiscale strategies are designed to mitigate the nonlinearity and ill-posedness of FWI by incorporating progressively shorter wavelengths in the parameter space. Synthetic and real-data case studies address reconstructing various parameters, from [Formula: see text] and [Formula: see text] velocities to density, anisotropy, and attenuation. This review attempts to illuminate the state of the art of FWI. Crucial jumps, however, remain necessary to make it as popular as migration techniques. The challenges can be categorized as (1) building accurate starting models with automatic procedures and/or recording low frequencies, (2) defining new minimization criteria to mitigate the sensitivity of FWI to amplitude errors and increasing the robustness of FWI when multiple parameter classes are estimated, and (3) improving computational efficiency by data-compression techniques to make 3D elastic FWI feasible.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. R649-R658 ◽  
Author(s):  
Yike Liu ◽  
Bin He ◽  
Huiyi Lu ◽  
Zhendong Zhang ◽  
Xiao-Bi Xie ◽  
...  

Many full-waveform inversion schemes are based on the iterative perturbation theory to fit the observed waveforms. When the observed waveforms lack low frequencies, those schemes may encounter convergence problems due to cycle skipping when the initial velocity model is far from the true model. To mitigate this difficulty, we have developed a new objective function that fits the seismic-waveform intensity, so the dependence of the starting model can be reduced. The waveform intensity is proportional to the square of its amplitude. Forming the intensity using the waveform is a nonlinear operation, which separates the original waveform spectrum into an ultra-low-frequency part and a higher frequency part, even for data that originally do not have low-frequency contents. Therefore, conducting multiscale inversions starting from ultra-low-frequency intensity data can largely avoid the cycle-skipping problem. We formulate the intensity objective function, the minimization process, and the gradient. Using numerical examples, we determine that the proposed method was very promising and could invert for the model using data lacking low-frequency information.


2021 ◽  
Author(s):  
J. Wang

Full-waveform inversion (FWI) has evolved to be the contemporary solution to resolve velocity models in areas of complex structure. Further, wide azimuth, long offset and rich low-frequency seismic data, resulting from broadband seismic acquisition, helps FWI update deeper with better convergence and stability. In this study from the South Mahakam area in offshore Indonesia, multiple layers of carbonate exist from shallow to deep with sharp velocity contrast. The target reservoir is down to 3.5 kilometers. However, for the acquired data with narrow azimuths (NAZ), short offsets (3 kilometers) and low signal to noise in the low frequencies, FWI encounters challenges of cycle skipping and unstable updates in the deeper targets that are beyond the diving-wave penetration depth. Time-lag FWI (TLFWI) (Zhang et al., 2018) uses time-shift differences between observed and modeled data as the cost function, and also makes better use of the low-frequency refraction and reflection energy. TLFWI gave good velocity updates in both the shallow and deep regions and, hence, gave an improved deep carbonate image. The anisotropic model is an important factor for the success of any FWI due to the coupling between velocity and anisotropy. In this paper, joint reflection and refraction tomography (Allemand et al., 2017) were applied in order to obtain stable anisotropy models for TLFWI. Following that, TLFWI with both refraction and reflection energy gives sensible velocity updates down to 3.5 kilometers. These updates to the model improve the seismic image and, importantly, reduce the depth uncertainties in this complex geological setting. The cumulative improvements increase interpretation confidence and can reduce future drilling risks. For the seismic processing community, the reprocessing of narrow azimuth, short-offset data with TLFWI, and associated technologies, offers great potential for generating improved and more reliable images from legacy, conventional, acquisition scenarios.


Sign in / Sign up

Export Citation Format

Share Document