Unlocking the potential of conventional narrow azimuth data by full-waveform inversion: a deep carbonate imaging case study, offshore Indonesia

2021 ◽  
Author(s):  
J. Wang

Full-waveform inversion (FWI) has evolved to be the contemporary solution to resolve velocity models in areas of complex structure. Further, wide azimuth, long offset and rich low-frequency seismic data, resulting from broadband seismic acquisition, helps FWI update deeper with better convergence and stability. In this study from the South Mahakam area in offshore Indonesia, multiple layers of carbonate exist from shallow to deep with sharp velocity contrast. The target reservoir is down to 3.5 kilometers. However, for the acquired data with narrow azimuths (NAZ), short offsets (3 kilometers) and low signal to noise in the low frequencies, FWI encounters challenges of cycle skipping and unstable updates in the deeper targets that are beyond the diving-wave penetration depth. Time-lag FWI (TLFWI) (Zhang et al., 2018) uses time-shift differences between observed and modeled data as the cost function, and also makes better use of the low-frequency refraction and reflection energy. TLFWI gave good velocity updates in both the shallow and deep regions and, hence, gave an improved deep carbonate image. The anisotropic model is an important factor for the success of any FWI due to the coupling between velocity and anisotropy. In this paper, joint reflection and refraction tomography (Allemand et al., 2017) were applied in order to obtain stable anisotropy models for TLFWI. Following that, TLFWI with both refraction and reflection energy gives sensible velocity updates down to 3.5 kilometers. These updates to the model improve the seismic image and, importantly, reduce the depth uncertainties in this complex geological setting. The cumulative improvements increase interpretation confidence and can reduce future drilling risks. For the seismic processing community, the reprocessing of narrow azimuth, short-offset data with TLFWI, and associated technologies, offers great potential for generating improved and more reliable images from legacy, conventional, acquisition scenarios.

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R1-R10 ◽  
Author(s):  
Zhendong Zhang ◽  
Tariq Alkhalifah ◽  
Zedong Wu ◽  
Yike Liu ◽  
Bin He ◽  
...  

Full-waveform inversion (FWI) is an attractive technique due to its ability to build high-resolution velocity models. Conventional amplitude-matching FWI approaches remain challenging because the simplified computational physics used does not fully represent all wave phenomena in the earth. Because the earth is attenuating, a sample-by-sample fitting of the amplitude may not be feasible in practice. We have developed a normalized nonzero-lag crosscorrelataion-based elastic FWI algorithm to maximize the similarity of the calculated and observed data. We use the first-order elastic-wave equation to simulate the propagation of seismic waves in the earth. Our proposed objective function emphasizes the matching of the phases of the events in the calculated and observed data, and thus, it is more immune to inaccuracies in the initial model and the difference between the true and modeled physics. The normalization term can compensate the energy loss in the far offsets because of geometric spreading and avoid a bias in estimation toward extreme values in the observed data. We develop a polynomial-type weighting function and evaluate an approach to determine the optimal time lag. We use a synthetic elastic Marmousi model and the BigSky field data set to verify the effectiveness of the proposed method. To suppress the short-wavelength artifacts in the estimated S-wave velocity and noise in the field data, we apply a Laplacian regularization and a total variation constraint on the synthetic and field data examples, respectively.


2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Katherine Flórez ◽  
Sergio Alberto Abreo Carrillo ◽  
Ana Beatriz Ramírez Silva

Full Waveform Inversion (FWI) schemes are gradually becoming more common in the oil and gas industry, as a new tool for studying complex geological zones, based on their reliability for estimating velocity models. FWI is a non-linear inversion method that iteratively estimates subsurface characteristics such as seismic velocity, starting from an initial velocity model and the preconditioned data acquired. Blended sources have been used in marine seismic acquisitions to reduce acquisition costs, reducing the number of times that the vessel needs to cross the exploration delineation trajectory. When blended or simultaneous without previous de-blending or separation, stage data are used in the reconstruction of the velocity model with the FWI method, and the computational time is reduced. However, blended data implies overlapping single shot-gathers, producing interference that affects the result of seismic approaches, such as FWI or seismic image migration. In this document, an encoding strategy is developed, which reduces the overlap areas within the blended data to improve the final velocity model with the FWI method.


2021 ◽  
Author(s):  
Kirill Gennadievich Gadylshin ◽  
Vladimir Albertovich Cheverda ◽  
Danila Nikolaevich Tverdokhlebov

Abstract Seismic surveys in the vast territory of Eastern Siberia are carried out in seismic and geological conditions of varying complexity. Obtaining a high-quality dynamic seismic image for the work area is a priority task in the states of contrasting heterogeneities of the near-surface. For this, it is necessary to restore an effective depth-velocity model that provides compensation for velocity anomalies and calculates static corrections. However, for the most complex near-surface structure, for example, the presence of trap intrusions and tuffaceous formations, the information content of the velocity models of the near-surface area obtained based on tomographic refinement turns out to be insufficient, and a search for another solution is required. The paper considers an approach based on Full Waveform Inversion (FWI). As the authors showed earlier, multiples associated with the free surface reduce the resolution of this approach. But their use increases the stability of the solution in the presence of uncorrelated noise. Therefore, at the first stage of FWI, the full wavefield is used, including free surface-related multiples, but they are suppressed in the next steps of the data processing. The results obtained demonstrate the ability of the FWI to restore complex geological structures of the near-surface area, even in the presence of high-velocity anomalies (trap intrusions).


Geophysics ◽  
2021 ◽  
pp. 1-82
Author(s):  
Wenyi Hu ◽  
Yuchen Jin ◽  
Xuqing Wu ◽  
Jiefu Chen

To effectively overcome the cycle-skipping issue in full waveform inversion (FWI), we developed a deep neural network (DNN) approach to predict the absent low-frequency components by exploiting the hidden physical relation connecting the low- and the high-frequency data. To efficiently solve this challenging nonlinear regression problem, two novel strategies were proposed to design the DNN architecture and to optimize the learning process: (1) dual data feed structure; (2) progressive transfer learning. With the dual data feed structure, not only the high-frequency data, but also the corresponding beat tone data are fed into the DNN to relieve the burden of feature extraction. The second strategy, progressive transfer learning, enables us to train the DNN using a single evolving training dataset. Within the framework of the progressive transfer learning, the training dataset continuously evolves in an iterative manner by gradually retrieving the subsurface information through the physics-based inversion module, progressively enhancing the prediction accuracy of the DNN and propelling the inversion process out of the local minima. The synthetic numerical experiments suggest that, without any a priori geological information, the low-frequency data predicted by the progressive transfer learning are sufficiently accurate for an FWI engine to produce reliable subsurface velocity models free of cycle-skipping artifacts.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. R153-R171 ◽  
Author(s):  
Guanghui Huang ◽  
Rami Nammour ◽  
William Symes

Full-waveform inversion produces highly resolved images of the subsurface and quantitative estimation of seismic wave velocity, provided that its initial model is kinematically accurate at the longest data wavelengths. If this initialization constraint is not satisfied, iterative model updating tends to stagnate at kinematically incorrect velocity models producing suboptimal images. The source-receiver extension overcomes this “cycle-skip” pathology by modeling each trace with its own proper source wavelet, permitting a good data fit throughout the inversion process. Because source wavelets should be constant (or vary systematically) across a shot gather, a measure of source trace dependence, for example, the mean square of the signature-deconvolved wavelet scaled by time lag, can be minimized to update the velocity model. For kinematically simple data, such measures of wavelet variance are mathematically equivalent to traveltime misfit. Thus, the model obtained by source-receiver extended inversion is close to that produced by traveltime tomography, even though the process uses no picked times. For more complex data, in which energy travels from source to receiver by multiple raypaths, Green’s function spectral notches may lead to slowly decaying trace-dependent wavelets with energy at time lags unrelated to traveltime error. Tikhonov regularization of the data-fitting problem suppresses these large-lag signals. Numerical examples suggest that this regularized formulation of source-receiver extended inversion is capable of recovering reasonably good velocity models from synthetic transmission and reflection data without stagnation at suboptimal models encountered by standard full-waveform inversion, but with essentially the same computational cost.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. U25-U38 ◽  
Author(s):  
Nuno V. da Silva ◽  
Andrew Ratcliffe ◽  
Vetle Vinje ◽  
Graham Conroy

Parameterization lies at the center of anisotropic full-waveform inversion (FWI) with multiparameter updates. This is because FWI aims to update the long and short wavelengths of the perturbations. Thus, it is important that the parameterization accommodates this. Recently, there has been an intensive effort to determine the optimal parameterization, centering the fundamental discussion mainly on the analysis of radiation patterns for each one of these parameterizations, and aiming to determine which is best suited for multiparameter inversion. We have developed a new parameterization in the scope of FWI, based on the concept of kinematically equivalent media, as originally proposed in other areas of seismic data analysis. Our analysis is also based on radiation patterns, as well as the relation between the perturbation of this set of parameters and perturbation in traveltime. The radiation pattern reveals that this parameterization combines some of the characteristics of parameterizations with one velocity and two Thomsen’s parameters and parameterizations using two velocities and one Thomsen’s parameter. The study of perturbation of traveltime with perturbation of model parameters shows that the new parameterization is less ambiguous when relating these quantities in comparison with other more commonly used parameterizations. We have concluded that our new parameterization is well-suited for inverting diving waves, which are of paramount importance to carry out practical FWI successfully. We have demonstrated that the new parameterization produces good inversion results with synthetic and real data examples. In the latter case of the real data example from the Central North Sea, the inverted models show good agreement with the geologic structures, leading to an improvement of the seismic image and flatness of the common image gathers.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE101-VE117 ◽  
Author(s):  
Hafedh Ben-Hadj-Ali ◽  
Stéphane Operto ◽  
Jean Virieux

We assessed 3D frequency-domain (FD) acoustic full-waveform inversion (FWI) data as a tool to develop high-resolution velocity models from low-frequency global-offset data. The inverse problem was posed as a classic least-squares optimization problem solved with a steepest-descent method. Inversion was applied to a few discrete frequencies, allowing management of a limited subset of the 3D data volume. The forward problem was solved with a finite-difference frequency-domain method based on a massively parallel direct solver, allowing efficient multiple-shot simulations. The inversion code was fully parallelized for distributed-memory platforms, taking advantage of a domain decomposition of the modeled wavefields performed by the direct solver. After validation on simple synthetic tests, FWI was applied to two targets (channel and thrust system) of the 3D SEG/EAGE overthrust model, corresponding to 3D domains of [Formula: see text] and [Formula: see text], respectively. The maximum inverted frequencies are 15 and [Formula: see text] for the two applications. A maximum of 30 dual-core biprocessor nodes with [Formula: see text] of shared memory per node were used for the second target. The main structures were imaged successfully at a resolution scale consistent with the inverted frequencies. Our study confirms the feasibility of 3D frequency-domain FWI of global-offset data on large distributed-memory platforms to develop high-resolution velocity models. These high-velocity models may provide accurate macromodels for wave-equation prestack depth migration.


Geophysics ◽  
2021 ◽  
pp. 1-54
Author(s):  
Milad Bader ◽  
Robert G. Clapp ◽  
Biondo Biondi

Low-frequency data below 5 Hz are essential to the convergence of full-waveform inversion towards a useful solution. They help build the velocity model low wavenumbers and reduce the risk of cycle-skipping. In marine environments, low-frequency data are characterized by a low signal-to-noise ratio and can lead to erroneous models when inverted, especially if the noise contains coherent components. Often field data are high-pass filtered before any processing step, sacrificing weak but essential signal for full-waveform inversion. We propose to denoise the low-frequency data using prediction-error filters that we estimate from a high-frequency component with a high signal-to-noise ratio. The constructed filter captures the multi-dimensional spectrum of the high-frequency signal. We expand the filter's axes in the time-space domain to compress its spectrum towards the low frequencies and wavenumbers. The expanded filter becomes a predictor of the target low-frequency signal, and we incorporate it in a minimization scheme to attenuate noise. To account for data non-stationarity while retaining the simplicity of stationary filters, we divide the data into non-overlapping patches and linearly interpolate stationary filters at each data sample. We apply our method to synthetic stationary and non-stationary data, and we show it improves the full-waveform inversion results initialized at 2.5 Hz using the Marmousi model. We also demonstrate that the denoising attenuates non-stationary shear energy recorded by the vertical component of ocean-bottom nodes.


Sign in / Sign up

Export Citation Format

Share Document