Sparse least-squares reverse time migration using 2-D undecimated wavelet transform

2018 ◽  
Author(s):  
Feipeng Li ◽  
Jinghuai Gao
Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. S313-S325
Author(s):  
Feipeng Li ◽  
Jinghuai Gao ◽  
Zhaoqi Gao ◽  
Xiudi Jiang ◽  
Wenbo Sun

The inadequate sampling of seismic data in the spatial dimension results in migration artifacts. Conventional least-squares reverse time migration (LSRTM) could improve the image quality. However, even LSRTM will not work in some inadequately sampling situations. To mitigate the impact of migration artifacts, we have developed a new LSRTM method with a sparse regularization, which takes advantage of the effective sparse representation of the subsurface reflectivity model in the 2D undecimated wavelet transform (UWT) domain. Different from other sparse regularizations, a sparseness constraint in the 2D UWT domain is applied on the angle slices of the image. To efficiently solve the least-squares inversion problem, we employ an inversion scheme using the conjugate gradient method that uses a soft threshold method to achieve sparse constraint in updating the conjugate gradient direction. Compared with the sparse constraint based on the discrete wavelet transform (DWT), the threshold in this method is angle-dependent and is determined according to the energy distribution of each angle slice. To avoid overregularization that can lead to instability and increase the number of iterations, we also apply an exponential threshold strategy. Numerical tests on synthetic datasets demonstrate that our method is capable of improving the image quality by enhancing the resolution and suppressing migration artifacts caused by inadequately sampled seismic data. The method can converge more rapidly than conventional LSRTM. Because this method performs sparse regularization on several slopes, it achieves better performance on enhancing complex structures with discontinuities such as the steeply dipping faults compared to DWT-based regularization.


2021 ◽  
Vol 1719 (1) ◽  
pp. 012030
Author(s):  
Phudit Sombutsirinun ◽  
Chaiwoot Boonyasiriwat

Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.


Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. S33-S46 ◽  
Author(s):  
Chuang Li ◽  
Jianping Huang ◽  
Zhenchun Li ◽  
Rongrong Wang

This study derives a preconditioned stochastic conjugate gradient (CG) method that combines stochastic optimization with singular spectrum analysis (SSA) denoising to improve the efficiency and image quality of plane-wave least-squares reverse time migration (PLSRTM). This method reduces the computational costs of PLSRTM by applying a controlled group-sampling method to a sufficiently large number of plane-wave sections and accelerates the convergence using a hybrid of stochastic descent (SD) iteration and CG iteration. However, the group sampling also produces aliasing artifacts in the migration results. We use SSA denoising as a preconditioner to remove the artifacts. Moreover, we implement the preconditioning on the take-off angle-domain common-image gathers (CIGs) for better results. We conduct numerical tests using the Marmousi model and Sigsbee2A salt model and compare the results of this method with those of the SD method and the CG method. The results demonstrate that our method efficiently eliminates the artifacts and produces high-quality images and CIGs.


2017 ◽  
Author(s):  
Bruno Pereira-Dias ◽  
André Bulcão ◽  
Djalma Soares Filho ◽  
Roberto Dias ◽  
Felipe Duarte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document