Near-surface scattering phenomena and implications for tunnel detection

2015 ◽  
Vol 3 (1) ◽  
pp. SF43-SF54 ◽  
Author(s):  
Shelby L. Peterie ◽  
Richard D. Miller

Tunnel locations are accurately interpreted from diffraction sections of focused mode converted P- to S-wave diffractions from a perpendicular tunnel and P-wave diffractions from a nonperpendicular (oblique) tunnel. Near-surface tunnels are ideal candidates for diffraction imaging due to their small size relative to the seismic wavelength and large acoustic impedance contrast at the tunnel interface. Diffraction imaging algorithms generally assume that the velocities of the primary wave and the diffracted wave are approximately equal, and that the diffraction apex is recorded directly above the scatterpoint. Scattering phenomena from shallow tunnels with kinematic properties that violate these assumptions were observed in one field data set and one synthetic data set. We developed the traveltime equations for mode-converted and oblique diffractions and demonstrated a diffraction imaging algorithm designed for the roll-along style of acquisition. Potential processing and interpretation pitfalls specific to these diffraction types were identified. Based on our observations, recommendations were made to recognize and image mode-converted and oblique diffractions and accurately interpret tunnel depth, horizontal location, and azimuth with respect to the seismic line.

Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 755-762 ◽  
Author(s):  
Arild Buland ◽  
Martin Landrø

The impact of prestack time migration on porosity estimation has been tested on a 2-D seismic line from the Valhall/Hod area in the North Sea. Porosity is estimated in the Cretaceous chalk section in a two‐step procedure. First, P-wave and S-wave velocity and density are estimated by amplitude variation with offset (AVO) inversion. These parameters are then linked to porosity through a petrophysical rock data base based on core plug analysis. The porosity is estimated both from unmigrated and prestack migrated seismic data. For the migrated data set, a standard prestack Kirchhoff time migration is used, followed by simple angle and amplitude corrections. Compared to modern high‐cost, true amplitude migration methods, this approach is faster and more practical. The test line is structurally fairly simple, with a maximum dip of 5°; but the results differ significantly, depending on whether migration is applied prior to the inversion. The maximum difference in estimated porosity is of the order of 10% (about 50% relative change). High‐porosity zones estimated from the unmigrated data were not present on the porosity section estimated from the migrated data.


2019 ◽  
Vol 218 (3) ◽  
pp. 1873-1891 ◽  
Author(s):  
Farbod Khosro Anjom ◽  
Daniela Teodor ◽  
Cesare Comina ◽  
Romain Brossier ◽  
Jean Virieux ◽  
...  

SUMMARY The analysis of surface wave dispersion curves (DCs) is widely used for near-surface S-wave velocity (VS) reconstruction. However, a comprehensive characterization of the near-surface requires also the estimation of P-wave velocity (VP). We focus on the estimation of both VS and VP models from surface waves using a direct data transform approach. We estimate a relationship between the wavelength of the fundamental mode of surface waves and the investigation depth and we use it to directly transform the DCs into VS and VP models in laterally varying sites. We apply the workflow to a real data set acquired on a known test site. The accuracy of such reconstruction is validated by a waveform comparison between field data and synthetic data obtained by performing elastic numerical simulations on the estimated VP and VS models. The uncertainties on the estimated velocity models are also computed.


2021 ◽  
Vol 40 (8) ◽  
pp. 567-575
Author(s):  
Myrto Papadopoulou ◽  
Farbod Khosro Anjom ◽  
Mohammad Karim Karimpour ◽  
Valentina Laura Socco

Surface-wave (SW) tomography is a technique that has been widely used in the field of seismology. It can provide higher resolution relative to the classical multichannel SW processing and inversion schemes that are usually adopted for near-surface applications. Nevertheless, the method is rarely used in this context, mainly due to the long processing times needed to pick the dispersion curves as well as the inability of the two-station processing to discriminate between higher SW modes. To make it efficient and to retrieve pseudo-2D/3D S-wave velocity (VS) and P-wave velocity (VP) models in a fast and convenient way, we develop a fully data-driven two-station dispersion curve estimation, which achieves dense spatial coverage without the involvement of an operator. To handle higher SW modes, we apply a dedicated time-windowing algorithm to isolate and pick the different modes. A multimodal tomographic inversion is applied to estimate a VS model. The VS model is then converted to a VP model with the Poisson's ratio estimated through the wavelength-depth method. We apply the method to a 2D seismic exploration data set acquired at a mining site, where strong lateral heterogeneity is expected, and to a 3D pilot data set, recorded with state-of-the-art acquisition technology. We compare the results with the ones retrieved from classical multichannel analysis.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. D101-D116
Author(s):  
Julius K. von Ketelhodt ◽  
Musa S. D. Manzi ◽  
Raymond J. Durrheim ◽  
Thomas Fechner

Joint P- and S-wave measurements for tomographic cross-borehole analysis can offer more reliable interpretational insight concerning lithologic and geotechnical parameter variations compared with P-wave measurements on their own. However, anisotropy can have a large influence on S-wave measurements, with the S-wave splitting into two modes. We have developed an inversion for parameters of transversely isotropic with a vertical symmetry axis (VTI) media. Our inversion is based on the traveltime perturbation equation, using cross-gradient constraints to ensure structural similarity for the resulting VTI parameters. We first determine the inversion on a synthetic data set consisting of P-waves and vertically and horizontally polarized S-waves. Subsequently, we evaluate inversion results for a data set comprising jointly measured P-waves and vertically and horizontally polarized S-waves that were acquired in a near-surface ([Formula: see text]) aquifer environment (the Safira research site, Germany). The inverted models indicate that the anisotropy parameters [Formula: see text] and [Formula: see text] are close to zero, with no P-wave anisotropy present. A high [Formula: see text] ratio of up to nine causes considerable SV-wave anisotropy despite the low magnitudes for [Formula: see text] and [Formula: see text]. The SH-wave anisotropy parameter [Formula: see text] is estimated to be between 0.05 and 0.15 in the clay and lignite seams. The S-wave splitting is confirmed by polarization analysis prior to the inversion. The results suggest that S-wave anisotropy may be more severe than P-wave anisotropy in near-surface environments and should be taken into account when interpreting cross-borehole S-wave data.


Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 131-139 ◽  
Author(s):  
M. Boulfoul ◽  
D. R. Watts

Instantaneous rotations are combined with f-k filtering to extract coherent S‐wave events from multicomponent shot records recorded by British Institutions Reflection Profiling Syndicate (BIRPS) Weardale Integrated S‐wave and P‐wave analysis (WISPA) experiment. This experiment was an attempt to measure the Poisson’s ratio of the lower crest by measuring P‐wave and S‐wave velocities. The multihole explosive source technique did generate S‐waves although not of opposite polarization. Attempts to produce stacks of the S‐wave data are unsuccessful because S‐wave splitting in the near surface produced random polarizations from receiver group to receiver group. The delay between the split wavelets varies but is commonly between 20 to 40 ms for 10 Hz wavelets. Dix hyperbola are produced on shot records after instantaneous rotations are followed by f-k filtering. To extract the instantaneous polarization, the traces are shifted back by the length of a moving window over which the calculation is performed. The instantaneous polarization direction is computed from the shifted data using the maximum eigenvector of the covariance matrix over the computation window. Split S‐waves are separated by the instantaneous rotation of the unshifted traces to the directions of the maximum eigenvectors determined for each position of the moving window. F-K filtering is required because of the presence of mode converted S‐waves and S‐waves produced by the explosive source near the time of detonation. Examples from synthetic data show that the method of instantaneous rotations will completely separate split S‐waves if the length of the moving window over which the calculation is performed is the length of the combined split wavelets. Separation may be achieved on synthetic data for wavelet delays as small as two sample intervals.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. D265-D277 ◽  
Author(s):  
Junxiao Li ◽  
Kristopher A. Innanen ◽  
Guo Tao

Sonic-reflection logging, a recently developed borehole geophysical scheme, is in principle capable of providing a clear view of outside the well bore. In this type of acoustic well logging, a key technical obstacle is that the reflected wave signal is almost entirely obscured by the directly arriving P-, S-, and Stoneley wave modes. Effective extraction of these reflection signals from the full acoustic waveforms is therefore a critical data-processing step. We have examined the use of the Karhunen-Loève (KL) transform, combined with a band-limiting filter, as a technique for the extraction of reflections of interest from a mixture with directly arriving wave modes of much higher amplitude. Under the assumption that large energy (squared-amplitude) differences exist between each wave component, the direct Stoneley wave, S-wave, and the P-wave are eliminated sequentially by subtracting the most significant principal components, after which the remaining signal is seen to be dominated by reflected events. Thereafter, the extracted reflections can be used in migration to provide interpretable images of the structures outside the borehole. Synthetic data are used to develop and justify our procedure for subtraction of appropriate KL principal components. Laboratory data are used to demonstrate in detail the suppression of unwanted modes. For comparison, the multiscale slowness-time-coherence method is applied to extract reflections from the same data set. The procedure is exemplified on a field data case with attention paid in particular to the consequences to imaging of near-borehole structures.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. U67-U76 ◽  
Author(s):  
Robert J. Ferguson

The possibility of improving regularization/datuming of seismic data is investigated by treating wavefield extrapolation as an inversion problem. Weighted, damped least squares is then used to produce the regularized/datumed wavefield. Regularization/datuming is extremely costly because of computing the Hessian, so an efficient approximation is introduced. Approximation is achieved by computing a limited number of diagonals in the operators involved. Real and synthetic data examples demonstrate the utility of this approach. For synthetic data, regularization/datuming is demonstrated for large extrapolation distances using a highly irregular recording array. Without approximation, regularization/datuming returns a regularized wavefield with reduced operator artifacts when compared to a nonregularizing method such as generalized phase shift plus interpolation (PSPI). Approximate regularization/datuming returns a regularized wavefield for approximately two orders of magnitude less in cost; but it is dip limited, though in a controllable way, compared to the full method. The Foothills structural data set, a freely available data set from the Rocky Mountains of Canada, demonstrates application to real data. The data have highly irregular sampling along the shot coordinate, and they suffer from significant near-surface effects. Approximate regularization/datuming returns common receiver data that are superior in appearance compared to conventional datuming.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B95-B105 ◽  
Author(s):  
Yao Wang ◽  
Richard D. Miller ◽  
Shelby L. Peterie ◽  
Steven D. Sloan ◽  
Mark L. Moran ◽  
...  

We have applied time domain 2D full-waveform inversion (FWI) to detect a known 10 m deep wood-framed tunnel at Yuma Proving Ground, Arizona. The acquired seismic data consist of a series of 2D survey lines that are perpendicular to the long axis of the tunnel. With the use of an initial model estimated from surface wave methods, a void-detection-oriented FWI workflow was applied. A straightforward [Formula: see text] quotient masking method was used to reduce the inversion artifacts and improve confidence in identifying anomalies that possess a high [Formula: see text] ratio. Using near-surface FWI, [Formula: see text] and [Formula: see text] velocity profiles were obtained with void anomalies that are easily interpreted. The inverted velocity profiles depict the tunnel as a low-velocity anomaly at the correct location and depth. A comparison of the observed and simulated waveforms demonstrates the reliability of inverted models. Because the known tunnel has a uniform shape and for our purposes an infinite length, we apply 1D interpolation to the inverted [Formula: see text] profiles to generate a pseudo 3D (2.5D) volume. Based on this research, we conclude the following: (1) FWI is effective in near-surface tunnel detection when high resolution is necessary. (2) Surface-wave methods can provide accurate initial S-wave velocity [Formula: see text] models for near-surface 2D FWI.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1446-1454 ◽  
Author(s):  
Side Jin ◽  
G. Cambois ◽  
C. Vuillermoz

S-wave velocity and density information is crucial for hydrocarbon detection, because they help in the discrimination of pore filling fluids. Unfortunately, these two parameters cannot be accurately resolved from conventional P-wave marine data. Recent developments in ocean‐bottom seismic (OBS) technology make it possible to acquire high quality S-wave data in marine environments. The use of (S)-waves for amplitude variation with offset (AVO) analysis can give better estimates of S-wave velocity and density contrasts. Like P-wave AVO, S-wave AVO is sensitive to various types of noise. We investigate numerically and analytically the sensitivity of AVO inversion to random noise and errors in angles of incidence. Synthetic examples show that random noise and angle errors can strongly bias the parameter estimation. The use of singular value decomposition offers a simple stabilization scheme to solve for the elastic parameters. The AVO inversion is applied to an OBS data set from the North Sea. Special prestack processing techniques are required for the success of S-wave AVO inversion. The derived S-wave velocity and density contrasts help in detecting the fluid contacts and delineating the extent of the reservoir sand.


1996 ◽  
Vol 86 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
R. D. Catchings ◽  
W. H. K. Lee

Abstract The 17 January 1994, Northridge, California, earthquake produced strong ground shaking at the Cedar Hills Nursery (referred to here as the Tarzana site) within the city of Tarzana, California, approximately 6 km from the epicenter of the mainshock. Although the Tarzana site is on a hill and is a rock site, accelerations of approximately 1.78 g horizontally and 1.2 g vertically at the Tarzana site are among the highest ever instrumentally recorded for an earthquake. To investigate possible site effects at the Tarzana site, we used explosive-source seismic refraction data to determine the shallow (<70 m) P-and S-wave velocity structure. Our seismic velocity models for the Tarzana site indicate that the local velocity structure may have contributed significantly to the observed shaking. P-wave velocities range from 0.9 to 1.65 km/sec, and S-wave velocities range from 0.20 and 0.6 km/sec for the upper 70 m. We also found evidence for a local S-wave low-velocity zone (LVZ) beneath the top of the hill. The LVZ underlies a CDMG strong-motion recording site at depths between 25 and 60 m below ground surface (BGS). Our velocity model is consistent with the near-surface (<30 m) P- and S-wave velocities and Poisson's ratios measured in a nearby (<30 m) borehole. High Poisson's ratios (0.477 to 0.494) and S-wave attenuation within the LVZ suggest that the LVZ may be composed of highly saturated shales of the Modelo Formation. Because the lateral dimensions of the LVZ approximately correspond to the areas of strongest shaking, we suggest that the highly saturated zone may have contributed to localized strong shaking. Rock sites are generally considered to be ideal locations for site response in urban areas; however, localized, highly saturated rock sites may be a hazard in urban areas that requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document