Brittleness index calculation based on amplitude-variation-with-offset inversion for coal-bed methane reservoir: A case study of the Qinshui Basin, China

2020 ◽  
Vol 8 (1) ◽  
pp. SA63-SA72
Author(s):  
Wu Haibo ◽  
Cheng Yan ◽  
Zhang Pingsong ◽  
Dong Shouhua ◽  
Huang Yaping

The brittleness index (BI) is an important parameter for coal-bed methane (CBM) reservoir fracturing characterization. Most published studies have relied on petrophysical and well-log data to estimate the geomechanical properties of reservoir rocks. The major drawback of such methods is the lack of control away from well locations. Therefore, we have developed a method of combining BI calculation from well logs with that inverted from 3D seismic data to overcome the limitation. A real example is given here to indicate the workflow. A traditional amplitude-variation-with-offset (AVO) inversion was conducted first. BI for the CBM reservoir was then calculated from the Lamé constants inverted from prestack seismic data through a traditional AVO inversion method. We build an initial low-frequency model based on the well-log data. Comparison of the seismic inverted BI at the target reservoir and BI extracted from the well-log data showed satisfactory results. This method has been proved to be efficient and effective enough at identifying BI sweet spots in CBM reservoirs.

2020 ◽  
Vol 8 (4) ◽  
pp. T1057-T1069
Author(s):  
Ritesh Kumar Sharma ◽  
Satinder Chopra ◽  
Larry Lines

The discrimination of fluid content and lithology in a reservoir is important because it has a bearing on reservoir development and its management. Among other things, rock-physics analysis is usually carried out to distinguish between the lithology and fluid components of a reservoir by way of estimating the volume of clay, water saturation, and porosity using seismic data. Although these rock-physics parameters are easy to compute for conventional plays, there are many uncertainties in their estimation for unconventional plays, especially where multiple zones need to be characterized simultaneously. We have evaluated such uncertainties with reference to a data set from the Delaware Basin where the Bone Spring, Wolfcamp, Barnett, and Mississippian Formations are the prospective zones. Attempts at seismic reservoir characterization of these formations have been developed in Part 1 of this paper, where the geologic background of the area of study, the preconditioning of prestack seismic data, well-log correlation, accounting for the temporal and lateral variation in the seismic wavelets, and building of robust low-frequency model for prestack simultaneous impedance inversion were determined. We determine the challenges and the uncertainty in the characterization of the Bone Spring, Wolfcamp, Barnett, and Mississippian sections and explain how we overcame those. In the light of these uncertainties, we decide that any deterministic approach for characterization of the target formations of interest may not be appropriate and we build a case for adopting a robust statistical approach. Making use of neutron porosity and density porosity well-log data in the formations of interest, we determine how the type of shale, volume of shale, effective porosity, and lithoclassification can be carried out. Using the available log data, multimineral analysis was also carried out using a nonlinear optimization approach, which lent support to our facies classification. We then extend this exercise to derived seismic attributes for determination of the lithofacies volumes and their probabilities, together with their correlations with the facies information derived from mud log data.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R245-R255 ◽  
Author(s):  
Ali Gholami ◽  
Hossein S. Aghamiry ◽  
Mostafa Abbasi

The inversion of prestack seismic data using amplitude variation with offset (AVO) has received increased attention in the past few decades because of its key role in estimating reservoir properties. AVO is mainly governed by the Zoeppritz equations, but traditional inversion techniques are based on various linear or quasilinear approximations to these nonlinear equations. We have developed an efficient algorithm for nonlinear AVO inversion of precritical reflections using the exact Zoeppritz equations in multichannel and multi-interface form for simultaneous estimation of the P-wave velocity, S-wave velocity, and density. The total variation constraint is used to overcome the ill-posedness while solving the forward nonlinear model and to preserve the sharpness of the interfaces in the parameter space. The optimization is based on a combination of Levenberg’s algorithm and the split Bregman iterative scheme, in which we have to refine the data and model parameters at each iteration. We refine the data via the original nonlinear equations, but we use the traditional cost-effective linearized AVO inversion to construct the Jacobian matrix and update the model. Numerical experiments show that this new iterative procedure is convergent and converges to a solution of the nonlinear problem. We determine the performance and optimality of our nonlinear inversion algorithm with various simulated and field seismic data sets.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. N31-N50 ◽  
Author(s):  
Jun Lu ◽  
Yun Wang ◽  
Jingyi Chen ◽  
Ying An

With the increase in exploration target complexity, more parameters are required to describe subsurface properties, particularly for finely stratified reservoirs with vertical transverse isotropic (VTI) features. We have developed an anisotropic amplitude variation with offset (AVO) inversion method using joint PP and PS seismic data for VTI media. Dealing with local minimum solutions is critical when using anisotropic AVO inversion because more parameters are expected to be derived. To enhance the inversion results, we adopt a hierarchical inversion strategy to solve the local minimum solution problem in the Gauss-Newton method. We perform the isotropic and anisotropic AVO inversions in two stages; however, we only use the inversion results from the first stage to form search windows for constraining the inversion in the second stage. To improve the efficiency of our method, we built stop conditions using Euclidean distance similarities to control iteration of the anisotropic AVO inversion in noisy situations. In addition, we evaluate a time-aligned amplitude variation with angle gather generation approach for our anisotropic AVO inversion using anisotropic prestack time migration. We test the proposed method on synthetic data in ideal and noisy situations, and find that the anisotropic AVO inversion method yields reasonable inversion results. Moreover, we apply our method to field data to show that it can be used to successfully identify complex lithologic and fluid information regarding fine layers in reservoirs.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. M43-M53 ◽  
Author(s):  
Zhaoyun Zong ◽  
Kun Li ◽  
Xingyao Yin ◽  
Ming Zhu ◽  
Jiayuan Du ◽  
...  

Seismic amplitude variation with offset (AVO) inversion is well-known as a popular and pragmatic tool used for the prediction of elastic parameters in the geosciences. Low frequencies missing from conventional seismic data are conventionally recovered from other geophysical information, such as well-log data, for estimating the absolute rock properties, which results in biased inversion results in cases of complex heterogeneous geologic targets or plays with sparse well-log data, such as marine or deep stratum. Broadband seismic data bring new opportunities to estimate the low-frequency components of the elastic parameters without well-log data. We have developed a novel AVO inversion approach with the Bayesian inference for broadband seismic data. The low-frequency components of the elastic parameters are initially estimated with the proposed broadband AVO inversion approach with the Bayesian inference in the complex frequency domain because seismic inversion in the complex frequency domain is helpful to recover the long-wavelength structures of the elastic models. Gaussian and Cauchy probability distribution density functions are used for the likelihood function and the prior information of model parameters, respectively. The maximum a posteriori probability solution is resolved to estimate the low-frequency components of the elastic parameters in the complex frequency domain. Furthermore, with those low-frequency components as initial models and constraints, the conventional AVO inversion method with the Bayesian inference in the time domain is further implemented to estimate the final absolute elastic parameters. Synthetic and field data examples demonstrate that the proposed AVO inversion in the complex frequency domain is able to predict the low-frequency components of elastic parameters well, and that those low-frequency components set a good foundation for the final estimation of the absolute elastic parameters.


2019 ◽  
Vol 7 (3) ◽  
pp. T581-T593 ◽  
Author(s):  
Mark Sams ◽  
Annushia Annamalai ◽  
Jeremy Gallop

Vertical transverse isotropy (VTI) will affect seismic inversion, but it is not possible to solve for the full set of anisotropic elastic parameters from amplitude variation with offset inversion because there exists an isotropic solution to every VTI problem. We can easily approximate the pseudoisotropic properties that result from the isotropic solution to the anisotropic problem for well-log data. We can then use these well-log properties to provide a low-frequency model for inversion and/or a framework for interpreting either absolute or relative inversion results. This, however, requires prior knowledge of the anisotropic properties, which are often unavailable or poorly constrained. If we ignore anisotropy and assume that the amplitude variations caused by VTI are going to be accounted for by effective wavelets, the inversion results would be in error: The impact of anisotropy is not merely a case of linear scaling of seismic amplitudes for any particular angle range. Ignoring VTI does not affect the prediction of acoustic impedance, but it does affect predictions of [Formula: see text] and density. For realistic values of anisotropy, these errors can be significant, such as predicting oil instead of brine. If the anisotropy of the rocks is known, then we can invert for the true vertical elastic properties using the known anisotropy coefficients through a facies-based inversion. This can produce a more accurate result than solving for pseudoelastic properties, and it can take advantage of the sometimes increased separation of isotropic and anisotropic rocks in the pseudoisotropic elastic domain. Because the effect of anisotropy will vary depending on the strength of the anisotropy and the distribution of the rocks, we strongly recommend forward modeling for each case prior to inversion to understand the potential impact on the study objectives.


2018 ◽  
Vol 6 (2) ◽  
pp. SD115-SD128
Author(s):  
Pedro Alvarez ◽  
William Marin ◽  
Juan Berrizbeitia ◽  
Paola Newton ◽  
Michael Barrett ◽  
...  

We have evaluated a case study, in which a class-1 amplitude variation with offset (AVO) turbiditic system located offshore Cote d’Ivoire, West Africa, is characterized in terms of rock properties (lithology, porosity, and fluid content) and stratigraphic elements using well-log and prestack seismic data. The methodology applied involves (1) the conditioning and modeling of well-log data to several plausible geologic scenarios at the prospect location, (2) the conditioning and inversion of prestack seismic data for P- and S-wave impedance estimation, and (3) the quantitative estimation of rock property volumes and their geologic interpretation. The approaches used for the quantitative interpretation of these rock properties were the multiattribute rotation scheme for lithology and porosity characterization and a Bayesian lithofluid facies classification (statistical rock physics) for a probabilistic evaluation of fluid content. The result indicates how the application and integration of these different AVO- and rock-physics-based reservoir characterization workflows help us to understand key geologic stratigraphic elements of the architecture of the turbidite system and its static petrophysical characteristics (e.g., lithology, porosity, and net sand thickness). Furthermore, we found out how to quantify and interpret the risk related to the probability of finding hydrocarbon in a class-1 AVO setting using seismically derived elastic attributes, which are characterized by having a small level of sensitivity to changes in fluid saturation.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. R725-R748 ◽  
Author(s):  
Bin She ◽  
Yaojun Wang ◽  
Jiandong Liang ◽  
Zhining Liu ◽  
Chengyun Song ◽  
...  

Amplitude variation with offset (AVO) inversion is a typical ill-posed inverse problem. To obtain a stable and unique solution, regularization techniques relying on mathematical models from prior information are commonly used in conventional AVO inversion methods (hence the name model-driven methods). Due to the difference between prior information and the actual geology, these methods often have difficulty achieving satisfactory accuracy and resolution. We have developed a novel data-driven inversion method for the AVO inversion problem. This method can effectively extract useful knowledge from well-log data, including sparse dictionaries of elastic parameters and sparse representation of subsurface model parameters. Lateral continuity of subsurface geology allows for the approximation of model parameters for a work area using the learned dictionaries. Instead of particular mathematical models, a sparse representation is used to constrain the inverse problem. Because no assumption is made about the model parameters, we consider this a data-driven method. The general process of the algorithm is as follows: (1) using well-log data as the training samples to learn the sparse dictionary of each elastic parameter, (2) imposing a sparse representation constraint on the objective function, making the elastic parameters be sparsely represented over the learned dictionary, and (3) solving the objective function by applying a coordinate-descent algorithm. Tests on several synthetic examples and field data demonstrate that our algorithm is effective in improving the resolution and accuracy of solutions and is adaptable to various geologies.


Sign in / Sign up

Export Citation Format

Share Document