Joint anisotropic amplitude variation with offset inversion of PP and PS seismic data

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. N31-N50 ◽  
Author(s):  
Jun Lu ◽  
Yun Wang ◽  
Jingyi Chen ◽  
Ying An

With the increase in exploration target complexity, more parameters are required to describe subsurface properties, particularly for finely stratified reservoirs with vertical transverse isotropic (VTI) features. We have developed an anisotropic amplitude variation with offset (AVO) inversion method using joint PP and PS seismic data for VTI media. Dealing with local minimum solutions is critical when using anisotropic AVO inversion because more parameters are expected to be derived. To enhance the inversion results, we adopt a hierarchical inversion strategy to solve the local minimum solution problem in the Gauss-Newton method. We perform the isotropic and anisotropic AVO inversions in two stages; however, we only use the inversion results from the first stage to form search windows for constraining the inversion in the second stage. To improve the efficiency of our method, we built stop conditions using Euclidean distance similarities to control iteration of the anisotropic AVO inversion in noisy situations. In addition, we evaluate a time-aligned amplitude variation with angle gather generation approach for our anisotropic AVO inversion using anisotropic prestack time migration. We test the proposed method on synthetic data in ideal and noisy situations, and find that the anisotropic AVO inversion method yields reasonable inversion results. Moreover, we apply our method to field data to show that it can be used to successfully identify complex lithologic and fluid information regarding fine layers in reservoirs.

Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. R669-R679 ◽  
Author(s):  
Gang Chen ◽  
Xiaojun Wang ◽  
Baocheng Wu ◽  
Hongyan Qi ◽  
Muming Xia

Estimating the fluid property factor and density from amplitude-variation-with-offset (AVO) inversion is important for fluid identification and reservoir characterization. The fluid property factor can distinguish pore fluid in the reservoir and the density estimate aids in evaluating reservoir characteristics. However, if the scaling factor of the fluid property factor (the dry-rock [Formula: see text] ratio) is chosen inappropriately, the fluid property factor is not only related to the pore fluid, but it also contains a contribution from the rock skeleton. On the other hand, even if the angle gathers include large angles (offsets), a three-parameter AVO inversion struggles to estimate an accurate density term without additional constraints. Thus, we have developed an equation to compute the dry-rock [Formula: see text] ratio using only the P- and S-wave velocities and density of the saturated rock from well-logging data. This decouples the fluid property factor from lithology. We also developed a new inversion method to estimate the fluid property factor and density parameters, which takes full advantage of the high stability of a two-parameter AVO inversion. By testing on a portion of the Marmousi 2 model, we find that the fluid property factor calculated by the dry-rock [Formula: see text] ratio obtained by our method relates to the pore-fluid property. Simultaneously, we test the AVO inversion method for estimating the fluid property factor and density parameters on synthetic data and analyze the feasibility and stability of the inversion. A field-data example indicates that the fluid property factor obtained by our method distinguishes the oil-charged sand channels and the water-wet sand channel from the well logs.


2016 ◽  
Vol 4 (4) ◽  
pp. T613-T625 ◽  
Author(s):  
Qizhen Du ◽  
Bo Zhang ◽  
Xianjun Meng ◽  
Chengfeng Guo ◽  
Gang Chen ◽  
...  

Three-term amplitude-variation with offset (AVO) inversion generally suffers from instability when there is limited prior geologic or petrophysical constraints. Two-term AVO inversion shows higher instability compared with three-term AVO inversion. However, density, which is important in the fluid-type estimation, cannot be recovered from two-term AVO inversion. To reliably predict the P- and S-waves and density, we have developed a robust two-step joint PP- and PS-wave three-term AVO-inversion method. Our inversion workflow consists of two steps. The first step is to estimate the P- and S-wave reflectivities using Stewart’s joint two-term PP- and PS-AVO inversion. The second step is to treat the P-wave reflectivity obtained from the first step as the prior constraint to remove the P-wave velocity related-term from the three-term Aki-Richards PP-wave approximated reflection coefficient equation, and then the reduced PP-wave reflection coefficient equation is combined with the PS-wave reflection coefficient equation to estimate the S-wave and density reflectivities. We determined the effectiveness of our method by first applying it to synthetic models and then to field data. We also analyzed the condition number of the coefficient matrix to illustrate the stability of the proposed method. The estimated results using proposed method are superior to those obtained from three-term AVO inversion.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R245-R255 ◽  
Author(s):  
Ali Gholami ◽  
Hossein S. Aghamiry ◽  
Mostafa Abbasi

The inversion of prestack seismic data using amplitude variation with offset (AVO) has received increased attention in the past few decades because of its key role in estimating reservoir properties. AVO is mainly governed by the Zoeppritz equations, but traditional inversion techniques are based on various linear or quasilinear approximations to these nonlinear equations. We have developed an efficient algorithm for nonlinear AVO inversion of precritical reflections using the exact Zoeppritz equations in multichannel and multi-interface form for simultaneous estimation of the P-wave velocity, S-wave velocity, and density. The total variation constraint is used to overcome the ill-posedness while solving the forward nonlinear model and to preserve the sharpness of the interfaces in the parameter space. The optimization is based on a combination of Levenberg’s algorithm and the split Bregman iterative scheme, in which we have to refine the data and model parameters at each iteration. We refine the data via the original nonlinear equations, but we use the traditional cost-effective linearized AVO inversion to construct the Jacobian matrix and update the model. Numerical experiments show that this new iterative procedure is convergent and converges to a solution of the nonlinear problem. We determine the performance and optimality of our nonlinear inversion algorithm with various simulated and field seismic data sets.


Geophysics ◽  
2020 ◽  
Vol 86 (1) ◽  
pp. R1-R14
Author(s):  
Zhaoyun Zong ◽  
Lixiang Ji

Horizontal layered formations with a suite of vertical or near-vertical fractures are usually assumed to be an approximate orthotropic medium and are more suitable for estimating fracture properties with wide-azimuth prestack seismic data in shale reservoirs. However, the small contribution of anisotropic parameters to the reflection coefficients highly reduces the stability of anisotropic parameter estimation by using seismic inversion approaches. Therefore, a novel model parameterization approach for the reflectivity and a pragmatic inversion method are proposed to enhance the stability of the inversion for orthotropic media. Previous attempts to characterize orthotropic media properties required using four or five independent parameters. However, we have derived a novel formulation that reduces the number of parameters to three. The inversion process is better conditioned with fewer degrees of freedom. An accuracy comparison of our formula with the previous ones indicates that our approach is sufficiently precise for reasonable parameter estimation. Furthermore, a Bayesian inversion method is developed that uses the amplitude variation with angle and azimuth (AVAZ) of the seismic data. Smooth background constraints reduce the similarity between the inversion result and the initial model, thereby reducing the sensitivity of the initial model to the inversion result. Cauchy and Gaussian probability distributions are used as prior constraints on the model parameters and the likelihood function, respectively. These ensure that the results are within the range of plausibility. Synthetic examples demonstrate that the adopted orthotropic AVAZ inversion method is feasible for estimating the anisotropic parameters even with moderate noise. The field data example illustrates the inversion robustness and stability of the adopted method in a fractured reservoir with a single well control.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. N81-N92 ◽  
Author(s):  
Amir Mollajan ◽  
Hossein Memarian ◽  
Beatriz Quintal

Amplitude variation with angle (AVA) inversion is one of the most effective techniques in hydrocarbon exploration and estimating subsurface petrophysical properties. The inversion problem as a nonlinear, multiparameter, and multimodal optimization problem is conventionally solved through linearized optimization methods, but with the cost of smoothing important geologic interfaces. In addition, the results obtained by these methods are more possible to be trapped in a local minimum, while global-optimization methods can produce more accurate results and preserve the interfaces of geologic structures. A Bayesian framework is used to formulate the AVA inversion problem, which incorporates a novel prior constraint included by two regularization functions, one for sparsity of the coefficients as well as recovering discontinuities and another one for enhancing the lateral continuity. The imperialist competitive algorithm as an efficient evolutionary algorithm is then used to optimize the resulted objective function, to invert the P-and S-wave velocities as well as the density. We compare our algorithm with a commonly used Bayesian linearized inversion method by applying both methods on synthetic data and real seismic data from Gulf of Mexico. Our results reveal the practicability and stability of the presented method for the AVA inversion problem.


2020 ◽  
Vol 8 (1) ◽  
pp. SA63-SA72
Author(s):  
Wu Haibo ◽  
Cheng Yan ◽  
Zhang Pingsong ◽  
Dong Shouhua ◽  
Huang Yaping

The brittleness index (BI) is an important parameter for coal-bed methane (CBM) reservoir fracturing characterization. Most published studies have relied on petrophysical and well-log data to estimate the geomechanical properties of reservoir rocks. The major drawback of such methods is the lack of control away from well locations. Therefore, we have developed a method of combining BI calculation from well logs with that inverted from 3D seismic data to overcome the limitation. A real example is given here to indicate the workflow. A traditional amplitude-variation-with-offset (AVO) inversion was conducted first. BI for the CBM reservoir was then calculated from the Lamé constants inverted from prestack seismic data through a traditional AVO inversion method. We build an initial low-frequency model based on the well-log data. Comparison of the seismic inverted BI at the target reservoir and BI extracted from the well-log data showed satisfactory results. This method has been proved to be efficient and effective enough at identifying BI sweet spots in CBM reservoirs.


2017 ◽  
Vol 5 (3) ◽  
pp. SL57-SL67 ◽  
Author(s):  
Guangsen Cheng ◽  
Xingyao Yin ◽  
Zhaoyun Zong

Prestack seismic inversion is widely used in fluid indication and reservoir prediction. Compared with linear inversion, nonlinear inversion is more precise and can be applied to high-contrast situations. The inversion results can be affected by the parameters’ sensitivity, so the parameterization of nonlinear equations is very significant. Considering the poor nonlinear amplitude-variation-with-offset (AVO) inversion results of impedance and velocity parameters, we adjust the parameters of the nonlinear equation, avoid the inaccuracy caused by parameters sensitivity and get the ideal nonlinear AVO inversion results of the Lamé parameters. The feasibility and stability of the nonlinear equation based on the Lamé parameters and method are verified by the model and the real data examples. The resolution and the lateral continuity of nonlinear inversion results are better compared with the linear inversion results.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. R725-R748 ◽  
Author(s):  
Bin She ◽  
Yaojun Wang ◽  
Jiandong Liang ◽  
Zhining Liu ◽  
Chengyun Song ◽  
...  

Amplitude variation with offset (AVO) inversion is a typical ill-posed inverse problem. To obtain a stable and unique solution, regularization techniques relying on mathematical models from prior information are commonly used in conventional AVO inversion methods (hence the name model-driven methods). Due to the difference between prior information and the actual geology, these methods often have difficulty achieving satisfactory accuracy and resolution. We have developed a novel data-driven inversion method for the AVO inversion problem. This method can effectively extract useful knowledge from well-log data, including sparse dictionaries of elastic parameters and sparse representation of subsurface model parameters. Lateral continuity of subsurface geology allows for the approximation of model parameters for a work area using the learned dictionaries. Instead of particular mathematical models, a sparse representation is used to constrain the inverse problem. Because no assumption is made about the model parameters, we consider this a data-driven method. The general process of the algorithm is as follows: (1) using well-log data as the training samples to learn the sparse dictionary of each elastic parameter, (2) imposing a sparse representation constraint on the objective function, making the elastic parameters be sparsely represented over the learned dictionary, and (3) solving the objective function by applying a coordinate-descent algorithm. Tests on several synthetic examples and field data demonstrate that our algorithm is effective in improving the resolution and accuracy of solutions and is adaptable to various geologies.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. V201-V221 ◽  
Author(s):  
Mehdi Aharchaou ◽  
Erik Neumann

Broadband preprocessing has become widely used for marine towed-streamer seismic data. In the standard workflow, far-field source designature, receiver and source-side deghosting, and redatuming to mean sea level are applied in sequence, with amplitude compensation for background [Formula: see text] delayed until the imaging or postmigration stages. Thus, each step is likely to generate its own artifacts, quality checking can be time-consuming, and broadband data are only obtained late in this chained workflow. We have developed a unified method for broadband preprocessing — called integrated broadband preprocessing (IBP) — which enables the joint application of all the above listed steps early in the processing sequence. The amplitude, phase, and amplitude-variation-with-offset fidelity of IBP are demonstrated on pressure data from the shallow, deep, and slanted streamers. The integration allows greater sparsity to emerge in the representation of seismic data, conferring clear benefits over the sequential application. Moreover, time sparsity, full dimensionality, and early amplitude [Formula: see text] compensation all have an impact on broadband data quality, in terms of reduced ringing artifacts, improved wavelet integrity at large crossline angles, and fewer residual high-frequency multiples.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. W31-W45 ◽  
Author(s):  
Necati Gülünay

The old technology [Formula: see text]-[Formula: see text] deconvolution stands for [Formula: see text]-[Formula: see text] domain prediction filtering. Early versions of it are known to create signal leakage during their application. There have been recent papers in geophysical publications comparing [Formula: see text]-[Formula: see text] deconvolution results with the new technologies being proposed. These comparisons will be most effective if the best existing [Formula: see text]-[Formula: see text] deconvolution algorithms are used. This paper describes common [Formula: see text]-[Formula: see text] deconvolution algorithms and studies signal leakage occurring during their application on simple models, which will hopefully provide a benchmark for the readers in choosing [Formula: see text]-[Formula: see text] algorithms for comparison. The [Formula: see text]-[Formula: see text] deconvolution algorithms can be classified by their use of data which lead to transient or transient-free matrices and hence windowed or nonwindowed autocorrelations, respectively. They can also be classified by the direction they are predicting: forward design and apply; forward design and apply followed by backward design and apply; forward design and apply followed by application of a conjugated forward filter in the backward direction; and simultaneously forward and backward design and apply, which is known as noncausal filter design. All of the algorithm types mentioned above are tested, and the results of their analysis are provided in this paper on noise free and noisy synthetic data sets: a single dipping event, a single dipping event with a simple amplitude variation with offset, and three dipping events. Finally, the results of applying the selected algorithms on field data are provided.


Sign in / Sign up

Export Citation Format

Share Document