vertical transverse isotropy
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 873 (1) ◽  
pp. 012102
Author(s):  
Madaniya Oktariena ◽  
Wahyu Triyoso ◽  
Fatkhan Fatkhan ◽  
Sigit Sukmono ◽  
Erlangga Septama ◽  
...  

Abstract The existence of anisotropy phenomena in the subsurface will affect the image quality of seismic data. Hence a prior knowledge of the type of anisotropy is quite essential, especially when dealing with deep water targets. The preliminary result of the anisotropy of the well-based modelling in deep water exploration and development is discussed in this study. Anisotropy types are modelled for Vertical Transverse Isotropy (VTI) and Horizontal Transverse Isotropy (HTI) based on Thomsen Parameters of ε and γ. The parameters are obtained from DSI Logging paired with reference δ value for modelling. Three initial conditions are then analysed. The first assumption is isotropic, in which the P-Wave Velocity, S-Wave Velocity, and Density Log modelled at their in-situ condition. The second and third assumptions are anisotropy models that are VTI and HTI. In terms of HTI, the result shows that the model of CDP Gather in the offset domain has a weak distortion in Amplitude Variation with Azimuth (AVAz). However, another finding shows a relatively strong hockey effect in far offset, which indicates that the target level is a VTI dominated type. It is supported by the geomechanical analysis result in which vertical stress acts as the maximum principal axis while horizontal stress is close to isotropic one. To sum up, this prior anisotropy knowledge obtained based on this study could guide the efficiency guidance in exploring the deep water environment.


2021 ◽  
Vol 873 (1) ◽  
pp. 012038
Author(s):  
Madaniya Oktariena ◽  
Wahyu Triyoso ◽  
Dona Sita Ambarsari ◽  
Sigit Sukmono ◽  
Erlangga Septama ◽  
...  

Abstract The seismic far-offset data plays important role in seismic subsurface imaging and reservoir parameters derivation, however, it is often distorted by the hockey stick effect due to improper correction of the Vertical Transverse Isotropy (VTI) during the seismic velocity analysis. The anisotropy parameter η is needed to properly correct the VTI effect. The anisotropy parameters of ε and δ obtained from log and core measurements, can be used to estimate the η values, however, the upscaling effects due to the different frequencies of the wave sources used in the measurements must be carefully taken into account. The objective is to get better understanding on the proper uses of anisotropy parameters in the the velocity analysis of deepwater seismic gather data. To achieve the objective, the anisotropy parameters from ultrasonic core measurements and dipole sonic log were used to model the seismic CDP gathers. The upscaling effects is reflected by the big difference of measured anisotropy values, in which the core measurement value is about 40 times higher than the log measurement value. The CDP gathers modelling results show that, due to the upscaling effect, the log and core-based models show significant differences of far-offset amplitude and hockey sticks responses. The differences can be minimized by scaling-down the log anisotropy values to core anisotropy values by using equations established from core – log anisotropy values cross-plot. The study emphasizes the importances of integrating anisotropy parameters from core and log data to minimize the upscaling effect to get the best η for the VTI correction in seismic velocity analysis.


2021 ◽  
Author(s):  
J. Adam Donald ◽  
◽  
Erik Wielemaker ◽  
Chris Holmes ◽  
Tom Neville ◽  
...  

Sonic data are now acquired in most wellbores for a variety of applications including seismic tie, porosity evaluation, lithology determination, fracture detection, gas detection, and geomechanics modeling. The industry is also more aware of the impacts of intrinsic (fractures, layering), extrinsic (stress), and borehole effects that may affect the basic measurements of compressional and shear slownesses. Any advanced interpretation of sonic data has historically been done days to weeks after the acquisition, and the value of the measurement can be diminished due to the time of delivery of the final product. An updated data-driven inversion algorithm applied while logging can provide robust shear and compressional slownesses with associated quality control indicators. The updated algorithm has fewer user parameters and is more reliable in layered, stressed, or damaged formations. Processing quality is determined using the coherency of the measured signal and an industry-standard rock physics model for theoretical validation. With the updated dipole shear inversion and more flexible dipole anisotropy frequency filters, the dipole shear anisotropy processing can deliver reliable results at the wellsite. A byproduct of the new dipole shear inversion algorithm is the environmental slowness that is used to optimally fit the dipole dispersion signal. The interpretation of the environmental slowness parameter can indicate the anisotropy mechanism in addition to zones of near-wellbore alteration to provide further insight immediately. The wellsite dipole shear inversion and anisotropy processing were run on a vertical well in eastern Australia, within a stacked tight gas sand reservoir that requires hydraulic fracturing. The main application of the sonic data was reliable slownesses as input to stress modeling for designing the stimulation, but the direction of the maximum horizontal stresses within the clastic gas-filled zones was also required. The dipole shear inversion results were able to handle various lithologies and hole conditions, as well as identify vertical transverse isotropy (VTI) anisotropic shale intervals between the horizontally stressed sand zones.


Author(s):  
Dowan Kim ◽  
Joongmoo Byun ◽  
Soon Jee Seol

Summary Microseismic monitoring is widely used to detect hydraulic fractures. Accurate mapping of microseismic events is essential to detect such fractures enhancing productivity. The eikonal solver is an efficient forward-modeling method used to map microseismic events. However, traditional eikonal solvers do not distinguish between head and direct waves, computing only the traveltimes of the waves that arrive first. We developed a new eikonal solver that computes the traveltimes of direct waves by imposing new constraints on the conventional, vertical transverse isotropy (VTI) solver. We then performed numerical experiments exploiting the traveltimes of direct waves. We used the traveltimes of only the first arrivals, and those of both first and direct arrivals, when performing inverted event mapping. The results showed that the uncertainties of event locations were minimized when both head and direct waves were analyzed due to the increased both the number of available data and the traveling path diversity. Also, we found that the use of only direct-arrival traveltimes was valuable when head-wave first arrivals were difficult to detect because the signal-to-noise (S/N) ratio was low.


2019 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
Julius Febriardi ◽  
Wahyu Triyoso

Sifat anisotropi pada suatu medium menyebabkan adanya perbedaan kecepatan rambat gelombang berdasarkan arah rambatnya. Medium bersifat transvere isotropy memiliki nilai kecepatan yang berbeda ke arah lateral dan vertikal. Medium bersifat vertical transverse isotropy (VTI) memiliki kecepatan lateral yang lebih besar daripada kecepatan vertikal. Perbedaan ini menyebabkan timbulnya efek hockey stick, terutama pada offset jauh. Karena informasi pada offset jauh amat penting, maka efek ini perlu dikoreksi terlebih dahulu sebelum melanjutkan ke tahapan pemrosesan data selanjutnya. Untuk mendapat pemahaman yang lebih baik, maka dibuat model sintetik VTI yang diproses menggunakan normal moveout (NMO), dip moveout (DMO) dan common reflection surface (CRS). Untuk menghilangkan efek dipping dan agar didapatkan hasil velocity analysis yang baik, DMO dan CRS dilakukan. Pilihan ini atas pertimbangan bahwa metode DMO dapat menghilangkan sifat dip- dependent pada gather seismik, dan analisis kecepatan paling mudah dilakukan pada metode CRS. Hasil perbandingan metode DMO dan CRS menunjukkan bahwa CRS menunjukkan S/N ratio yang lebih baik dan memiliki ketidakpastian yang lebih kecil dalam analisis kecepatan yang berpengaruh langsung dalam estimasi parameter koreksi anisotropi. Nilai parameter koreksi anisotropi diestimasi pada CDP yang ditentukan menggunakan pendekatan nonhyperbolic moveout. Nilai rata-rata yang diperoleh pada masing-masing metode menunjukkan hasil yang berbeda. Nilai ηeff yang paling mendekati nilai η model adalah pada metode DMO dan CRS.


Solid Earth ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 1857-1876
Author(s):  
Adrià Meléndez ◽  
Clara Estela Jiménez ◽  
Valentí Sallarès ◽  
César R. Ranero

Abstract. We present the implementation of Thomsen's weak anisotropy approximation for vertical transverse isotropy (VTI) media within TOMO3D, our code for 2-D and 3-D joint refraction and reflection travel-time tomographic inversion. In addition to the inversion of seismic P-wave velocity and reflector depth, the code can now retrieve models of Thomsen's parameters (δ and ε). Here, we test this new implementation following four different strategies on a canonical synthetic experiment in ideal conditions with the purpose of estimating the maximum capabilities and potential weak points of our modeling tool and strategies. First, we study the sensitivity of travel times to the presence of a 25 % anomaly in each of the parameters. Next, we invert for two combinations of parameters (v, δ, ε and v, δ, v⊥), following two inversion strategies, simultaneous and sequential, and compare the results to study their performance and discuss their advantages and disadvantages. Simultaneous inversion is the preferred strategy and the parameter combination (v, δ, ε) produces the best overall results. The only advantage of the parameter combination (v, δ, v⊥) is a better recovery of the magnitude of v. In each case, we derive the fourth parameter from the equation relating ε, v⊥ and v. Recovery of v, ε and v⊥ is satisfactory, whereas δ proves to be impossible to recover even in the most favorable scenario. However, this does not hinder the recovery of the other parameters, and we show that it is still possible to obtain a rough approximation of the δ distribution in the medium by sampling a reasonable range of homogeneous initial δ models and averaging the final δ models that are satisfactory in terms of data fit.


2019 ◽  
Vol 7 (3) ◽  
pp. T581-T593 ◽  
Author(s):  
Mark Sams ◽  
Annushia Annamalai ◽  
Jeremy Gallop

Vertical transverse isotropy (VTI) will affect seismic inversion, but it is not possible to solve for the full set of anisotropic elastic parameters from amplitude variation with offset inversion because there exists an isotropic solution to every VTI problem. We can easily approximate the pseudoisotropic properties that result from the isotropic solution to the anisotropic problem for well-log data. We can then use these well-log properties to provide a low-frequency model for inversion and/or a framework for interpreting either absolute or relative inversion results. This, however, requires prior knowledge of the anisotropic properties, which are often unavailable or poorly constrained. If we ignore anisotropy and assume that the amplitude variations caused by VTI are going to be accounted for by effective wavelets, the inversion results would be in error: The impact of anisotropy is not merely a case of linear scaling of seismic amplitudes for any particular angle range. Ignoring VTI does not affect the prediction of acoustic impedance, but it does affect predictions of [Formula: see text] and density. For realistic values of anisotropy, these errors can be significant, such as predicting oil instead of brine. If the anisotropy of the rocks is known, then we can invert for the true vertical elastic properties using the known anisotropy coefficients through a facies-based inversion. This can produce a more accurate result than solving for pseudoelastic properties, and it can take advantage of the sometimes increased separation of isotropic and anisotropic rocks in the pseudoisotropic elastic domain. Because the effect of anisotropy will vary depending on the strength of the anisotropy and the distribution of the rocks, we strongly recommend forward modeling for each case prior to inversion to understand the potential impact on the study objectives.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. C85-C94 ◽  
Author(s):  
Houzhu (James) Zhang ◽  
Hongwei Liu ◽  
Yang Zhao

Seismic anisotropy is an intrinsic elastic property. Appropriate accounting of anisotropy is critical for correct and accurate positioning seismic events in reverse time migration. Although the full elastic wave equation may serve as the ultimate solution for modeling and imaging, pseudoelastic and pseudoacoustic wave equations are more preferable due to their computation efficiency and simplicity in practice. The anisotropic parameters and their relations are not arbitrary because they are constrained by the energy principle. Based on the investigation of the stability condition of the pseudoelastic wave equations, we have developed a set of explicit formulations for determining the S-wave velocity from given Thomsen’s parameters [Formula: see text] and [Formula: see text] for vertical transverse isotropy and tilted transverse isotropy media. The estimated S-wave velocity ensures that the wave equations are stable and well-posed in the cases of [Formula: see text] and [Formula: see text]. In the case of [Formula: see text], a common situation in carbonate, a positive value of S-wave velocity is needed to avoid the wavefield instability. Comparing the stability constraints of the pseudoelastic- with the full-elastic wave equation, we conclude that the feasible range of [Formula: see text] and [Formula: see text] was slightly larger for the pseudoelastic assumption. The success of achieving high-accuracy images and high-quality angle gathers using the proposed constraints is demonstrated in a synthetic example and a field example from Saudi Arabia.


Sign in / Sign up

Export Citation Format

Share Document