Structure enhanced least-squares migration by deep learning based structural preconditioning

Author(s):  
Cheng Cheng ◽  
Yang He ◽  
Bin Wang ◽  
Yi Huang
2019 ◽  
Author(s):  
Bruno Dias ◽  
Cláudio Guerra ◽  
André Bulcão ◽  
Roberto Dias

2020 ◽  
Author(s):  
Lian Duan ◽  
Alejandro Valenciano ◽  
Nizar Chemingui

Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. H27-H33 ◽  
Author(s):  
Jun Ji

To reduce the migration artifacts arising from incomplete data or inaccurate operators instead of migrating data with the adjoint of the forward-modeling operator, a least-squares migration often is considered. Least-squares migration requires a forward-modeling operator and its adjoint. In a derivation of the mathematically correct adjoint operator to a given forward-time-extrapolation modeling operator, the exact adjoint of the derived operator is obtained by formulating an explicit matrix equation for the forward operation and transposing it. The programs that implement the exact adjoint operator pair are verified by the dot-product test. The derived exact adjoint operator turns out to differ from the conventional reverse-time-migration (RTM) operator, an implementation of wavefield extrapolation backward in time. Examples with synthetic data show that migration using the exact adjoint operator gives similar results for a conventional RTM operator and that least-squares RTM is quite successful in reducing most migration artifacts. The least-squares solution using the exact adjoint pair produces a model that fits the data better than one using a conventional RTM operator pair.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yerong Zhong ◽  
Guoheng Ruan ◽  
Ehab Abozinadah ◽  
Jiaming Jiang

Abstract This article proposes a nameplate recognition method based on the least-squares method and deep learning algorithm character feature fusion. This method extracts the histogram of the edge direction of the character and constructs the histogram feature vector based on the wavelet transform deep learning algorithm. We use classifier training for the text recognition of the nameplate to segment the text into individual characters. Then, we extract the character features to build a template. Experiments prove that the algorithm meets the practical application needs of nameplate identification of power equipment and achieves the design goals.


Geophysics ◽  
2021 ◽  
pp. 1-61
Author(s):  
Luana Nobre Osorio ◽  
Bruno Pereira-Dias ◽  
André Bulcão ◽  
Luiz Landau

Least-squares migration (LSM) is an effective technique for mitigating blurring effects and migration artifacts generated by the limited data frequency bandwidth, incomplete coverage of geometry, source signature, and unbalanced amplitudes caused by complex wavefield propagation in the subsurface. Migration deconvolution (MD) is an image-domain approach for least-squares migration, which approximates the Hessian operator using a set of precomputed point spread functions (PSFs). We introduce a new workflow by integrating the MD and the domain decomposition (DD) methods. The DD techniques aim to solve large and complex linear systems by splitting problems into smaller parts, facilitating parallel computing, and providing a higher convergence in iterative algorithms. The following proposal suggests that instead of solving the problem in a unique domain, as conventionally performed, we split the problem into subdomains that overlap and solve each of them independently. We accelerate the convergence rate of the conjugate gradient solver by applying the DD methods to retrieve a better reflectivity, which is mainly visible in regions with low amplitudes. Moreover, using the pseudo-Hessian operator, the convergence of the algorithm is accelerated, suggesting that the inverse problem becomes better conditioned. Experiments using the synthetic Pluto model demonstrate that the proposed algorithm dramatically reduces the required number of iterations while providing a considerable enhancement in the image resolution and better continuity of poorly illuminated events.


Sign in / Sign up

Export Citation Format

Share Document