Iterative least-squares migration for high-resolution angle gathers

Author(s):  
Lian Duan ◽  
Alejandro Valenciano ◽  
Nizar Chemingui
Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. S327-S342
Author(s):  
Shohei Minato ◽  
Kees Wapenaar ◽  
Ranajit Ghose

To quantitatively image fractures with high resolution, we have developed an elastic least-squares migration (LSM) algorithm coupled with linear-slip theory, which accurately addresses seismic wave interaction with thin structures. We derive a linearized waveform inversion using the Born approximation to the boundary integral equation for scattered waves, including linear-slip interfaces for P-SV and SH wavefields. Numerical modeling tests assuming a laboratory-scale fracture where a 20 cm long fracture is illuminated by waves with a 50 kHz center frequency show that our LSM successfully estimates fracture compliances. Furthermore, due to the presence of coupling compliances at the fracture, the results using our LSM show better images than those using the conventional LSM estimating the Lamé constants. We also numerically illustrate that our LSM can be successfully applied to dipole acoustic borehole logging data with 3 kHz center frequency for single-well reflection imaging of a 10 m long, dipping fracture embedded in a random background. Finally, we apply LSM to laboratory experimental data, measuring PP reflections from a fluid-filled fracture. We confirm that the estimated fracture compliances correspond well to those estimated by earlier amplitude variation with offset inversion. Furthermore, the LSM resolves the spatially varying fracture compliances due to local filling of water in the fracture. Because the linear-slip theory can be applied to thin structures in a wide range of scales, high-resolution imaging results and estimated fracture compliance distributions will be crucial to further address small-scale properties at fractures, joints, and geologic faults.


2020 ◽  
Author(s):  
L. Duan ◽  
D. Whitmore ◽  
N. Chemingui ◽  
E. Klochikhina

2019 ◽  
Author(s):  
Bruno Dias ◽  
Cláudio Guerra ◽  
André Bulcão ◽  
Roberto Dias

Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 378-385 ◽  
Author(s):  
Aristotelis Dasios ◽  
Clive McCann ◽  
Timothy Astin

We minimize the effect of noise and increase both the reliability and the resolution of attenuation estimates obtained from multireceiver full‐waveform sonics. Multiple measurements of effective attenuation were generated from full‐waveform sonic data recorded by an eight‐receiver sonic tool in a gas‐bearing sandstone reservoir using two independent techniques: the logarithmic spectral ratio (LSR) and the instantaneous frequency (IF) method. After rejecting unstable estimates [receiver separation <2 ft (0.61 m)], least‐squares inversion was used to combine the multiple estimates into high‐resolution attenuation logs. The procedure was applied to raw attenuation data obtained with both the LSR and IF methods, and the resulting logs showed that the attenuation estimates obtained for the maximum receiver separation of 3.5 ft (1.07 m) provide a smoothed approximation of the high‐resolution measurements. The approximation is better for the IF method, with the normalized crosscorrelation factor between the low‐ and high‐resolution logs being 0.90 for the IF method and 0.88 for the LSR method.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. H27-H33 ◽  
Author(s):  
Jun Ji

To reduce the migration artifacts arising from incomplete data or inaccurate operators instead of migrating data with the adjoint of the forward-modeling operator, a least-squares migration often is considered. Least-squares migration requires a forward-modeling operator and its adjoint. In a derivation of the mathematically correct adjoint operator to a given forward-time-extrapolation modeling operator, the exact adjoint of the derived operator is obtained by formulating an explicit matrix equation for the forward operation and transposing it. The programs that implement the exact adjoint operator pair are verified by the dot-product test. The derived exact adjoint operator turns out to differ from the conventional reverse-time-migration (RTM) operator, an implementation of wavefield extrapolation backward in time. Examples with synthetic data show that migration using the exact adjoint operator gives similar results for a conventional RTM operator and that least-squares RTM is quite successful in reducing most migration artifacts. The least-squares solution using the exact adjoint pair produces a model that fits the data better than one using a conventional RTM operator pair.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


2016 ◽  
Vol 914 ◽  
pp. 35-46 ◽  
Author(s):  
Ying-Xu Zeng ◽  
Svein Are Mjøs ◽  
Fabrice P.A. David ◽  
Adrien W. Schmid

Sign in / Sign up

Export Citation Format

Share Document