Wettability dependent P-wave scattering and velocity saturation relation in granular medium

Author(s):  
Jimmy X. Li ◽  
Reza Rezaee ◽  
Tobias M. Müller ◽  
Mahyar Madadi ◽  
Mohammad Sarmadivaleh
2011 ◽  
Vol 63 (3) ◽  
pp. 375-375
Author(s):  
H. Ouerdane ◽  
M. J. Jamieson
Keyword(s):  
P Wave ◽  
S Wave ◽  

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Ping-Lin Jiang ◽  
Hua Jiang ◽  
Yu-Sheng Jiang ◽  
Dai Wang ◽  
Nan Li ◽  
...  

The seismic wave scattering by a 3D tunnel mountain is investigated by the indirect boundary element method (IBEM). Without loss of generality, the 3D physical model of hemispherical tunnel mountain in an elastic half-space is established, and the influence of the incidence frequency and angle of P or SV wave on the mountain surface displacements is mainly examined. It is shown that there exists quite a difference between the spatial distribution of displacement amplitude under the incident P wave and the one under SV wave and that the incidence frequency and angle of wave, especially the existence of tunnel excavated in the mountain, have a great effect on the surface displacements of mountain; the presence of the tunnel in the mountain may cause the greater amplification of surface displacement, which is unfavorable to the mountain projects. In addition, it should be noted that the tunnel may suffer the more severe damage under the incident SV wave.


1990 ◽  
Vol 515 (4) ◽  
pp. 665-685 ◽  
Author(s):  
G. Holzwarth ◽  
G. Pari ◽  
B.K. Jennings

Geophysics ◽  
1998 ◽  
Vol 63 (1) ◽  
pp. 132-138 ◽  
Author(s):  
Rosemary Knight ◽  
Jack Dvorkin ◽  
Amos Nur

The relationship between elastic wave velocities and water saturation in a water/gas reservoir depends strongly on whether saturation is heterogeneous (patchy) or homogeneous. Heterogeneity in saturation may result from lithologic heterogeneity because under conditions of capillary equilibrium, different lithologies within a reservoir can have different saturations, depending on their porosities and permeabilities. We investigate this phenomenon by generating models of a reservoir in which we control the distribution of lithologic units and theoretically determine the corresponding velocity‐saturation relationship. We assume a state of capillary equilibrium in the reservoir and determine the saturation level of each region within the reservoir from the corresponding capillary pressure curve for the lithologic unit at that location. The velocities we calculate for these models show that saturation heterogeneity, caused by lithologic variation, can lead to a distinct dependence of velocity on saturation. In a water‐gas saturated reservoir, a patchy distribution of the different lithologic units is found to cause P-wave velocity to exhibit a noticeable and almost continuous velocity variation across the entire saturation range. This is in distinct contrast to the response of a homogeneous reservoir where there is only a large change in velocity at water saturations close to 100%.


Sign in / Sign up

Export Citation Format

Share Document