Workflow for computation of geotechnical and earthquake engineering parameters from seismic refraction and uphole logging

Author(s):  
Khalid Amin Khan ◽  
Sana Kayani ◽  
Gulraiz Akhter ◽  
Amber Latif ◽  
Usama Younas
2020 ◽  
Vol 4 (2) ◽  
pp. 84-88
Author(s):  
Mfoniso U. Aka ◽  
Moses M. M. Ekpa ◽  
Doris O. Okoroh ◽  
Bethrand E. Oguama ◽  
Johnson C. Ibuot

Seismic refraction survey was conducted at Ibiono Ibom Local government area of Akwa Ibom State, Nigeria, using 12 channels ES 3000S enhancement seismograph. This was done to evaluate and obtained information on depth and thickness of the shallow subsurface and characterized the bearing and engineering parameters on the bases of soil and rock competencies for stability of engineering works. The travel times of refracted waves measured were used to calculate P and S wave velocities employed in the evaluation of bearing strength and engineering parameters. The results revealed that seismic waves penetrated into three layers. The values of depth and thickness for upper layer ranged from 0.0 m to 4.5 m and 4.5 m, middle layer ranged from 5.0 m to 12.5 m and 7.5, lower layer ranged from 15.0 m to 25.2 m and 10.2 m. The bearing capacity parameters calculated were allowable bearing capacity and ultimate bearing capacity, engineering parameters: Concentration Index, Stress Ratio, Material Index and Density Gradient. The third layer reflected good competent soil and rock quality in the southeastern part of the study area, and was delineated as a better layer for engineering stability.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. MA11-MA20 ◽  
Author(s):  
Claudio Strobbia ◽  
Giorgio Cassiani

Surface-wave methods are quite popular for site characterization in geotechnical earthquake engineering. Among these techniques, a particular role is taken by passive methods for their ability to yield information on the low-frequency range and consequently on large depths. One such passive method, the refraction microtremors (ReMi) technique, has been proposed as a simple alternative to 2D-array techniques to estimate surface-wave dispersion by using linear arrays of geophones. The technique owes its name to the use of widely available instruments also adopted for seismic refraction. The basic hypotheses underlying ReMi are that noise is distributed isotropically in azimuth or is aligned exactly with the array. These conditions often are not met, and in most cases they are not verified because such analysis requires an accurate approach to data processing that is rarely applied. We have developed an algorithm that verifies ReMi’s basic hypotheses by analyzing experimental data. In addition, we have proposed an algorithm to identify the lowest apparent velocity on the ReMi spectra, thus avoiding interpretation problems.


2008 ◽  
Vol 05 (04) ◽  
pp. 483-511 ◽  
Author(s):  
MICHALIS FRAGIADAKIS ◽  
MANOLIS PAPADRAKAKIS

A critical review of the current state of the art of the computing practices adopted by the earthquake engineering community is presented. Advanced computational tools are necessary for estimating the demand on seismically excited structures. Such computational methodologies can provide valuable information on a number of engineering parameters which have been proven essential for earthquake the engineering practice. The discussion extends from the finite element modeling of earthquake-resistant structures and the analysis procedures currently used to future developments considering the calculation of uncertainty and methodologies which rely on sophisticated computational methods. The objective is to provide a common ground of collaboration between the earthquake engineering and computational mechanics communities in an effort to mitigate future earthquake losses.


2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


2020 ◽  
pp. 10-21 ◽  
Author(s):  
Vladimir V. Voronov ◽  
Nikolay I. Shchepetkov

The article describes content of original and relevant but virtually forgotten thesis of V.V. Voronov on lighting of production site interiors by means of overhead natural (using three types of skylights) and artificial illumination, in order to elaborate scientific methodology for architectural design of more qualitative luminous environment on the basis of comprehensive approach and enhanced criteria framework of its evaluation using light engineering parameters. The thesis is unique in terms of the scope and quality of field and laboratory observations which are reflected not only in the text but also in the graphical attachments, namely photos, figures, schemes, drawings, charts, nomograms, and diagrams accompanied by specific measured or calculated parameters. The first part of the thesis contains theoretical basics and results of field observations conducted by different methods. This second part is the exposition of chapter 3 of the V.V. Voronov’s candidate thesis (1985). It describes the methodology for and the results of the experiments by means of planar and volumetric light simulation using the architectural lighting simulating assembly (chamber) which were conducted in MARKHI in 1970–1985.


2003 ◽  
Vol 31 (3) ◽  
pp. 132-158 ◽  
Author(s):  
R. E. Okonieski ◽  
D. J. Moseley ◽  
K. Y. Cai

Abstract The influence of tread designs on tire performance is well known. The tire industry spends significant effort in the development process to create and refine tread patterns. Creating an aesthetic yet functional design requires characterization of the tread design using many engineering parameters such as stiffness, moments of inertia, principal angles, etc. The tread element stiffness is of particular interest because of its use to objectively determine differences between tread patterns as the designer refines the design to provide optimum levels of performance. The tread designer monitors the change in stiffness as the design evolves. Changes to the geometry involve many attributes including the number of sipes, sipe depth, sipe location, block element edge taper, nonskid depth, area net-to-gross, and so forth. In this paper, two different formulations for calculating tread element or block stiffness are reviewed and are compared to finite element results in a few cases. A few simple examples are shown demonstrating the basic functionality that is possible with a numerical method.


Sign in / Sign up

Export Citation Format

Share Document