Integration of Multi-geophysical Approaches to Identify Potential Pathways of Heavy Metals Contamination - A Case Study in Zeida, Morocco

2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2835
Author(s):  
Yawar Hussain ◽  
Rogerio Uagoda ◽  
Welitom Borges ◽  
Renato Prado ◽  
Omar Hamza ◽  
...  

Reliable characterization of the karst system is essential for risk assessment where many associated hazards (e.g., cover-collapse dolines and groundwater pollution) can affect natural and built environments, threatening public safety. The use of multiple geophysical approaches may offer an improved way to investigate such cover-collapse sinkholes and aid in geohazard risk assessments. In this paper, covered karst, which has two types of shallow caves (vadose and fluvial) located in Tarimba (Goias, Brazil), was investigated using various geophysical methods to evaluate their efficiency in the delineation of the geometry of sediments filled sinkhole. The methods used for the investigation were Electrical Resistivity Tomography (ERT), Seismic Refraction Survey (SRS), Seismic Refraction Tomography (SRT) and the Very Low Frequency Electromagnetic (VLF-EM) method. The study developed several (2D) sections of the measured physical properties, including P-wave velocity and electrical resistivity, as well as the induced current (because of local bodies). For the analysis and processing of the data obtained from these methods, the following approaches were adopted: ERT inversion using a least-square scheme, Karous-Hjelt filter for VLF-EM data and time-distance curves and Vp cross-sections for the SRS. The refraction data analysis showed three-layered stratigraphy topsoil, claystone and carbonate bedrock, respectively. The findings obtained from ERT (three-layered stratigraphy and sediment-filled doline), as well as VLF-EM (fractured or filled caves as a positive anomaly), were found to be consistent with the actual field conditions. However, the SRS and SRT methods did not show the collapsed material and reached the limited the depth because of shorter profile lengths. The study provides a reasonable basis for the development of an integrated geophysical approach for site characterization of karst systems, particularly the perched tank and collapse doline.


2005 ◽  
Vol 42 (4) ◽  
pp. 1105-1115 ◽  
Author(s):  
O Meric ◽  
S Garambois ◽  
D Jongmans ◽  
M Wathelet ◽  
J L Chatelain ◽  
...  

Several geophysical techniques (electromagnetic profiling, electrical tomography, seismic refraction tomography, and spontaneous potential and seismic noise measurement) were applied in the investigation of the large gravitational mass movement of Séchilienne. France. The aim of this study was to test the ability of these methods to characterize and delineate the rock mass affected by this complex movement in mica schists, whose lateral and vertical limits are still uncertain. A major observation of this study is that all the zones strongly deformed (previously and at present) by the movement are characterized by high electrical resistivity values (>3 kΩ·m), in contrast to the undisturbed mass, which exhibits resistivity values between a few hundred and 1 kΩ·m. As shown by the surface observations and the seismic results, this resistivity increase is due to a high degree of fracturing associated with the creation of air-filled voids inside the mass. Other geophysical techniques were tested along a horizontal transect through the movement, and an outstanding coherency appeared between the geophysical anomalies and the displacement rate curve. These preliminary results illustrate the benefits of combined geophysical techniques for characterizing the rock mass involved in the movement. Results also suggest that monitoring the evolution of the rock mass movement with time-lapse geophysical surveys could be beneficial.Key words: gravitational movement, geophysical methods, Séchilienne.


Author(s):  
GN Egwuonwu ◽  
EI Okoyeh ◽  
DC Agarana ◽  
EG Nwaka ◽  
OB Nwosu ◽  
...  

Two-dimensional Electrical Resistivity Tomography (2DERT) and Seismic Refraction Tomography (2DSRT) were concurrently applied in assessment of a gully site with the view of assessing its stability and risk level. Eight profile lines oriented parallel and perpendicular to the boundary of the gully were surveyed. As a result, apparent resistivity model tomograms in the range of 1-9,000 and p-wave velocity models in the range of 300-700 were obtained from the two techniques respectively. Interpretation of the models obtained show predominance of unconsolidated clay, shale intercalates, clayey sand, sandy clay and weathered lateritic soil at shallow depths. Low amplitude undulating refracting layers, landslide slip subsurface and lose horizons were also delineated at shallow depths. The predominance of weak, clayey and unconsolidated lithology at the gully site suggests evidence of unstable gravitational equilibrium which imply environmental hazard. The plausible deductions made from the two


2020 ◽  
Author(s):  
remi valois ◽  
Nicole Schafer ◽  
Giulia De Pasquale ◽  
Gonzalo Navarro ◽  
Shelley MacDonell

<p>Rock glaciers play an important hydrological role in the semiarid Andes (SA; 27º-35ºS). They cover about three times the area of uncovered glaciers and they are an important contribution to streamflow when water is needed most, especially during dry years and in the late summer months. Their characteristics such as their extension in depth and their ice content is poorly known. Here, we present a case study of one active rock glacier and periglacial inactive geoform in Estero Derecho (~30˚S), in the upper Elqui River catchment, Chile. Three geophysical methods (ground-penetrating radar and electrical resistivity and seismic refraction tomography) were combined to detect the presence of ice and understand the internal structure of the landform. The results suggest that the combination of electrical resistivity and seismic velocity provide relevant information on ice presence and their geometry. Radargrams shows diffraction linked to boulders presence but some information regarding electromagnetic velocity could be extracted. These results strongly suggest that such landforms contain ice, are therefore important to include in future inventories and should be considered when evaluating the hydrological importance of a particular region.</p><p> </p>


2021 ◽  
Author(s):  
Vincenzo Critelli ◽  
Francesco Ronchetti ◽  
Alessandro Corsini ◽  
Matteo Berti ◽  
Gianluigi Di Paola

<p>With this note, we show a three-dimensional reconstruction of the basal surface of a large-scale and deep-seated rock-slide located in Northern Apennines (Northern Italy), obtained by integrating direct observations from boreholes and data from multi-methods geophysics. This type of landslides is so intrinsically complex and extended, that borehole investigations alone are generally insufficient to fully characterize the inner structures. To overcame such limitations, geophysical surveys are employed extensively (Bogoslovsky and Ogilvy 1977; Bruno and Marillier 2000; Bichler et al. 2004; Jongmans and Garambois 2007). In this study, we integrated multi-parameter data derived from 400 m of DC electrical resistivity tomography (ERT), 466 m of P-wave seismic refraction tomography (SRT), 420 meters of P-wave seismic reflection profile (SRF) together with 156 HVSR seismic noise recordings processed with spectral ratio methodology (Nakamura 1989). To constrain the inversion of the HVSR and migrate to the spatial domain the SRF, the P-wave velocity domains from SRT profiles were used after comparison with stratigraphic data. Moreover, the ERT profile fitted the geometrical features depicted by SRF profile. By means of all these data, we managed to map the surface exhibiting the highest acoustic impedance and the most relevant spatial continuity, which, according to the stratigraphic data, is to be ascribed to the basal interface between the fractured flysch rock masses involved in deep-seated sliding and the underlying undamaged bedrock. Comparison with inclinometer data also showed, presently, the active sliding surfaces match the mapped interface only in some locations, whereas in other they are shallower.  This indicates that the mapped basal surface can be considered the envelope of the maximum volume involved, in the past, by the mass movement, and that part of such volume is nowadays no longer moving. The integration of multi-geophysical surveys, in this case, proved to be a valuable way to spatialize evidences collected by boreholes, providing the basis for a three-dimensional geological model of the slope that can later on be used for modelling purposes.</p><p><strong>References</strong></p><p>Bichler, A., P. Bobrowsky, M. Best, M. Douma, J. Hunter, T. Calvert, and R. Burns. 2004. “Three-Dimensional Mapping of a Landslide Using a Multi-Geophysical Approach: The Quesnel Forks Landslide.” Landslides 1 (1): 29–40. https://doi.org/10.1007/s10346-003-0008-7.</p><p>Bogoslovsky, V A, and A A Ogilvy. 1977. “GEOPHYSICAL METHODS FOR THE INVESTIGATION OF LANDSLIDES.” GEOPHYSICS 42 (3): 562–71. https://doi.org/10.1190/1.1440727.</p><p>Bruno, F., and F. Marillier. 2000. “Test of High-Resolution Seismic Reflection and Other Geophysical Techniques on the Boup Lanslide in the Swiss Alps.” Surveys in Geophysics 21 (4): 333–48.</p><p>Jongmans, Denis, and Stéphane Garambois. 2007. “Geophysical Investigation of Landslides: A Review.” Bulletin de La Societe Geologique de France 178 (2): 101–12. https://doi.org/10.2113/gssgfbull.178.2.101.</p><p>Nakamura, Y. 1989. “Method for Dynamic Characteristics of Subsurface Using Microtremor on the Ground Surface.” Proc. 20th JSCE Earthquake Eng. Symposium.</p>


Author(s):  
Alessandro Sandrin ◽  
Aleksandar Maricak ◽  
Björn H. Heincke ◽  
Rune J. Clausen ◽  
Lars Nielsen ◽  
...  

Geophysical methods have been widely used in recent decades to investigate and monitor landfill sites for environmental purposes. With the advent of the circular economy, waste contained in old landfills may be considered a resource that can be developed. Since the content of old landfills is largely unknown, the occurrence and quantity of valuable materials must be investigated before embarking on any development activity. Two landfills on Sjælland, Denmark (located at Hvalsø and Avedøre) were selected for a pilot study to characterise their content. At both locations, a set of geophysical surveys is underway. Here, we present the data obtained from magnetic and 2D seismic refraction surveys. Magnetic data show various anomalies that can be interpreted as caused by iron-rich waste. At both sites, the landfill material results in generally low P-wave velocity (<400 m/s), lower than those obtained for Quaternary sediments at Avedøre. The seismic velocities appear to increase in the presence of metals or by compaction with depth (>550 m/s). We propose that seismic refraction can thus define the bottom of the landfill and possibly its internal structure, especially when combined with other methods.


2021 ◽  
Vol 3 (2) ◽  
pp. 148-154
Author(s):  
Muzakir Zainal ◽  
Badrul Munir ◽  
Marwan Marwan ◽  
Muhammad Yanis ◽  
Akmal Muhni

Landslides are the most common geological phenomenon in Indonesia.The event is damage to public infrastructure, and fatalities was a big impact. Therefore, mapping the geometry of landslides is a part of the mitigation effort possible by geophysical methods. In this research, we applied seismic refraction tomography (SRT) to study the geometry of the sliding zone from the landslide event.TheNational Disaster Management Authority reported that the area was frequently occurring landslide disaster, i.e. 2018, 2019 and 2020 which caused the public infrastructure and obstructed the road access from the central to the west of Aceh. The SRT was measured in two profileslong the road.Data measurements were conducted on the side of the Babahrot - GayoLues road section that had experienced landslides.Measurements were made using the Seismograph PASI 16S24-P and 24 geophones to obtain a 92-meterlong profile with 2 meter spacing between the geophones. P-wave velocity data modeling is done using ZondST2D software.The results of modeling profiles 1 and 2 describe three different subsurface layers.The SRT profile 1 model consists of slate (0.2 - 0.7 km/s), clay (0.8 - 1.3 km/s), and sandy clay (1.4 - 1.9 km/s).While, the model of profile 2 consists of slate (0.5 - 1.0 km/s), clay (1.1 - 1.6 km/ s), and sandy clay (1.7 - 2.5 km/s).The contrasting wave velocity model shows that the SRT method can be used in landslide studies as a reference in determining the mechanism of the landslide system.


2016 ◽  
Vol 78 (8-6) ◽  
Author(s):  
Rose Nadia ◽  
Rosli Saad ◽  
Nordiana Muztaza ◽  
Nur Azwin Ismail ◽  
Mohd Mokhtar Saidin

In this study, correlation is made between seismic P-wave velocities (Vp) with standard penetration test (SPT-N) values to produce soil parameter estimation for engineering site applications. A seismic refraction tomography (SRT) line of 69 m length was spread across two boreholes with 3 m geophones spacing. The acquired data were processed using Firstpix, SeisOpt2D and surfer8 software. The Vp at particular depths were pinpointed and correlated with geotechnical parameters (SPT-N values) from the borehole records. The correlation between Vp and SPT-N values has been established. For cohesive soils, it is grouped into three categories according to consistencies; stiff, very stiff and hard, having velocity rangesof 575-314 m/s, 808-1483 m/s and 1735-2974 m/s, respectively. For non-cohesive soils, it is also divided into three categories based on the denseness as loose, medium dense and dense with Vp ranges of 528-622 m/s, 900-2846 m/s and 2876-2951 m/s, respectively


Geophysics ◽  
1952 ◽  
Vol 17 (3) ◽  
pp. 505-530 ◽  
Author(s):  
R. Woodward Moore

Of the several geophysical methods used in exploration for oil and useful ore bodies, the earth‐resistivity and seismic‐refraction tests have been found to be the most adaptable to the shallow tests generally required in highway construction work. Of these, the earth‐resistivity test is the faster and has a wider range of application to highway problems than does the seismic test. Use of both methods of tests in subsurface explorations for engineering structures is expanding. The paper cites a growing need for a more thorough subsurface investigation of all engineering structure sites and gives examples of field data obtained by the Bureau of Public Roads when making preliminary geophysical surveys of proposed highway locations or structure sites. The economic aspects and the advantages and limitations of the two methods of test are discussed with particular reference to their application to highway engineering problems.


Author(s):  
Gilein J. Steensma ◽  
Mark A. Kappelhoff ◽  
Duncan A. McInnis ◽  
Eric Gilson

Pipeline river crossings and sections of pipeline routes where steep terrain requires directionally drilled borings have the highest chance of being successfully designed and constructed if subsurface geological conditions are understood. In this paper we present results of geophysical surveys conducted to characterize the subsurface at two pipeline river crossings and at a site where steep topography would likely require directional boring below the face of a steep hillside. The objective is to help assess and minimize the risk in engineering design in difficult terrain by analyzing subsurface geology from geophysical data and vertical geotechnical borings, and evaluating the dynamic behavior of the river itself through hydrologic analysis. Risk factors can be assigned on the basis of lithology and environmental considerations relating to the level of potential impact in different parts of the crossing. The laterally heterogeneous nature of river channels, consisting of stacked paleochannels and floodplains could require a significant number of vertical geotechnical borings for adequate characterization of the entire crossing. We find that a combination of electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and ground penetrating radar (GPR) data can efficiently provide us with an understanding of electrical and mechanical properties from which lateral variations and depth extent of lithology along the proposed boring can be inferred. Confirmatory vertical geotechnical borings allow us to verify our interpretation at two locations. Geophysical data are used to laterally extrapolate the lithologic interpretation and define, in conjunction with surface water hydrologic considerations, the minimum depth of directionally drilled borings and optimum locations of ingress/egress points. The investment in a geological assessment study to understand subsurface conditions prior to beginning horizontal boring operations is essential to mitigate risk and ultimately may save money. In the case of steep terrain, geophysical data can provide valuable information on the vertical and lateral variations in subsurface properties in areas where it would be impossible to safely drill vertical borings. Our last case history is an example of the geological information that can be efficiently inferred from geophysical surveys conducted in steep terrain.


Sign in / Sign up

Export Citation Format

Share Document