Basement structure of the Bac Bo Basin based on the 3D interpretation of satellite gravity and magnetic data

2013 ◽  
Author(s):  
Nguyen Nhu Trung
Author(s):  
Richard M. Carruthers ◽  
John D. Cornwell

Lateral variations in the density and magnetization of the rocks within the crust give rise to "anomalies" in the Earth's gravity and magnetic fields. These anomalies can be measured and interpreted in terms of the geology both in a qualitative sense, by mapping out trends and changes in anomaly style, and quantitatively, by creating models of the subsurface which reproduce the observed fields. Such interpretations are generally less definitive in themselves than the results from seismic surveys (see chapter 12), but the data are widely available and can provide information in areas where other methods are ineffective or have not been applied. As the different geophysical techniques respond to specific rock properties such as density, magnetization, and acoustic velocity, the results are complementary, and a fully integrated approach to data collection and interpretation is generally more effective than the sum of its parts assessed on an individual basis. Gravity and magnetic data have been acquired, at least to a reconnaissance scale, over most of the world. In particular, the release into the public domain of satellite altimetry information (combined with improved methods of data processing) means that there is gravity coverage to a similar standard for most of the offshore region to within about 50 km of the coast. Magnetic anomalies recorded from satellites provide global coverage, but the high altitude of the observations means that only large-scale features extending over many 10s of kilometers are delineated. Reconnaissance aeromagnetic surveys with flight lines 10-20 km apart provide a lateral anomaly resolution similar to that of the satellite gravity data. Oceanographic surveys undertaken by a variety of academic and research institutions are another valuable source of data in remote regions offshore which supplement and extend the more detailed coverage obtained over the continental shelves, for example, by oil companies in areas of hydrocarbon interest. Surveys over land vary widely in terms of acquisition parameters and quality, but some form of national compilation is available from many countries. A number of possible applications of the potential field (i.e., gravity and magnetic) data follow from the terms set out by UNCLOS. Paragraph 4(b) of article 76 states, "In the absence of evidence to the contrary, the foot of the continental slope is to be determined as the point of maximum change in the gradient at its base" (italics added).


Author(s):  
D. A. Sidorov ◽  
◽  
L. V. Lapina ◽  
N. V. Kholmanskikh ◽  
D. V. Emelyanov ◽  
...  

The article reviews features of the pre-Jurassic geological structure of the Krasnoleninsky Swell, located on the western edge of the West Siberian petroleum basin. New geological and geophysical materials are presented enabling significant clarifification of the relationships pattern between Precambrian, Paleozoic and Triassic formation complexes. The stratification of the pre-Jurassic section is based on previously known age determinations and datings made in recent years by high-precision methods. The analysis of mode of occurrence of Pre-Jurassic rock complexes is based on the interpretation of seismic materials and gravity and magnetic data. The proposed model of the Krasnoleninsky Swell pre-Jurassic basement is characterized by the significantly reduced volume of pre-Cambrian formations due to the expansion of the Paleozoic complexes area, local Paleozoic depressions at the base of the Yem-Yegovskaya and Kamennaya peaks and linear zones of development of Triassic terrigenous-volcanogenic rocks on the Talinskaya Terrace and in the Palyanovsky trough have been identified. The conclusion is made about the long and complex history of the basement structure formation in the zone of collision junction of divergent Ural and Central-West Siberian folded systems.


2021 ◽  
pp. M56-2020-5
Author(s):  
Folker Pappa ◽  
Jörg Ebbing

AbstractThis chapter describes the application and coverage of gravity and magnetic data for Antarctica with emphasis on airborne and satellite models. Low resolution satellite data help to fill gaps between high-resolution airborne data. Satellite gravity data are best used to study broad-scale lithospheric architecture while airborne data, especially magnetic data, provide finer detail. We review examples of gravity and magnetic analysis and describe the possibilities and pitfalls for estimating the properties of the lithosphere as it relates to the mantle. This is followed by a discussion on geothermal heat flow and possible ways to combine different geophysical and petrological models for a better understanding of the Antarctic mantle.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Nicole Debeglia ◽  
Jacques Corpel

A new method has been developed for the automatic and general interpretation of gravity and magnetic data. This technique, based on the analysis of 3-D analytic signal derivatives, involves as few assumptions as possible on the magnetization or density properties and on the geometry of the structures. It is therefore particularly well suited to preliminary interpretation and model initialization. Processing the derivatives of the analytic signal amplitude, instead of the original analytic signal amplitude, gives a more efficient separation of anomalies caused by close structures. Moreover, gravity and magnetic data can be taken into account by the same procedure merely through using the gravity vertical gradient. The main advantage of derivatives, however, is that any source geometry can be considered as the sum of only two types of model: contact and thin‐dike models. In a first step, depths are estimated using a double interpretation of the analytic signal amplitude function for these two basic models. Second, the most suitable solution is defined at each estimation location through analysis of the vertical and horizontal gradients. Practical implementation of the method involves accurate frequency‐domain algorithms for computing derivatives with an automatic control of noise effects by appropriate filtering and upward continuation operations. Tests on theoretical magnetic fields give good depth evaluations for derivative orders ranging from 0 to 3. For actual magnetic data with borehole controls, the first and second derivatives seem to provide the most satisfactory depth estimations.


Sign in / Sign up

Export Citation Format

Share Document