Q-compensated reverse-time migration using a new time-domain viscoacoustic wave equation

2019 ◽  
Author(s):  
Jidong Yang ◽  
Hejun Zhu
Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. S479-S499 ◽  
Author(s):  
Jidong Yang ◽  
Hejun Zhu

With limited recording apertures, finite-frequency source functions, and irregular subsurface illuminations, traditional imaging methods have been insufficient to produce satisfactory reflectivity images with high resolution and amplitude fidelity. This is because most traditional imaging approaches are commonly formulated as the adjoint instead of the inverse operator with respect to the forward-modeling operator. In addition, intrinsic attenuation introduces amplitude loss and phase dispersion during wave propagation. Without considering these effects, migrated images might be kinematically and dynamically incorrect. We have developed a viscoacoustic least-squares reverse time migration (LSRTM) method based on a time-domain complex-valued wave equation. According to the Born approximation, we first linearized the viscoacoustic wave equation and derived a demigration operator. Then, using the complex-valued Lagrange multiplier method, we derived the adjoint viscoacoustic wave equation and corresponding sensitivity kernel. With the forward and adjoint operators, a linear inverse problem is formulated to estimate the subsurface reflectivity model. A total-variation regularization scheme is introduced to enhance the robustness of our viscoacoustic LSRTM, and a diagonal Hessian is used as the preconditioner to accelerate the convergence. Three synthetic examples are used to demonstrate that our approach enables us to compensate attenuation effects, improve imaging resolution, and enhance amplitude fidelity in comparison with the adjoint imaging method.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S505-S519 ◽  
Author(s):  
Jidong Yang ◽  
Hejun Zhu

During seismic wave propagation, intrinsic attenuation inside the earth gives rise to amplitude loss and phase dispersion. Without appropriate correction strategies in migration, these effects degrade the amplitudes and resolution of migrated images. Based on a new time-domain viscoacoustic wave equation, we have developed a viscoacoustic reverse time migration (RTM) approach to correct attenuation-associated dispersion and dissipation effects. A time-reverse wave equation is derived to extrapolate the receiver wavefields, in which the sign of the dissipation term is reversed, whereas the dispersion term remains unchanged. The difference between the forward and time-reverse wave equations is consistent with the physical insights of attenuation compensation during wavefield backpropagation. Due to the introduction of an imaginary unit in the dispersion term, the forward and time-reverse wave equations are complex valued. They are similar to the time-dependent Schrödinger equation, whose real and imaginary parts are coupled during wavefield extrapolation. The analytic property of the extrapolated source and receiver wavefields allows us to explicitly separate up- and downgoing waves. A causal imaging condition is implemented by crosscorrelating downgoing source and upgoing receiver wavefields to remove low-wavenumber artifacts in migrated images. Numerical examples demonstrate that our viscoacoustic RTM approach is capable of producing subsurface reflectivity images with correct spatial locations as well as amplitudes.


2021 ◽  
Vol 11 (7) ◽  
pp. 3010
Author(s):  
Hao Liu ◽  
Xuewei Liu

The lack of an initial condition is one of the major challenges in full-wave-equation depth extrapolation. This initial condition is the vertical partial derivative of the surface wavefield and cannot be provided by the conventional seismic acquisition system. The traditional solution is to use the wavefield value of the surface to calculate the vertical partial derivative by assuming that the surface velocity is constant. However, for seismic exploration on land, the surface velocity is often not uniform. To solve this problem, we propose a new method for calculating the vertical partial derivative from the surface wavefield without making any assumptions about the surface conditions. Based on the calculated derivative, we implemented a depth-extrapolation-based full-wave-equation migration from topography using the direct downward continuation. We tested the imaging performance of our proposed method with several experiments. The results of the Marmousi model experiment show that our proposed method is superior to the conventional reverse time migration (RTM) algorithm in terms of imaging accuracy and amplitude-preserving performance at medium and deep depths. In the Canadian Foothills model experiment, we proved that our method can still accurately image complex structures and maintain amplitude under topographic scenario.


Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S549-S556 ◽  
Author(s):  
Xiongwen Wang ◽  
Xu Ji ◽  
Hongwei Liu ◽  
Yi Luo

Plane-wave reverse time migration (RTM) could potentially provide quick subsurface images by migrating fewer plane-wave gathers than shot gathers. However, the time delay between the first and the last excitation sources in the plane-wave source largely increases the computation cost and decreases the practical value of this method. Although the time delay problem is easily overcome by periodical phase shifting in the frequency domain for one-way wave-equation migration, it remains a challenge for time-domain RTM. We have developed a novel method, referred as to fast plane-wave RTM (FP-RTM), to eliminate unnecessary computation burden and significantly reduce the computational cost. In the proposed FP-RTM, we assume that the Green’s function has finite-length support; thus, the plane-wave source function and its responding data can be wrapped periodically in the time domain. The wrapping length is the assumed total duration length of Green’s function. We also determine that only two period plane-wave source and data after the wrapping process are required for generating the outcome with adequate accuracy. Although the computation time for one plane-wave gather is twice as long as a normal shot gather migration, a large amount of computation cost is saved because the total number of plane-wave gathers to be migrated is usually much less than the total number of shot gathers. Our FP-RTM can be used to rapidly generate RTM images and plane-wave domain common-image gathers for velocity model building. The synthetic and field data examples are evaluated to validate the efficiency and accuracy of our method.


2014 ◽  
Vol 962-965 ◽  
pp. 2984-2987
Author(s):  
Jia Jia Yang ◽  
Bing Shou He ◽  
Ting Chen

Based on two-way acoustic wave equation, we present a method for computing angle-domain common-image gathers for reverse time migration. The method calculates the propagation direction of source wave-fields and receiver wave-fields according to expression of energy flow density vectors (Poynting vectors) of acoustic wave equation in space-time domain to obtain the reflection angle, then apply the normalized cross-correlation imaging condition to achieve the angle-domain common-image gathers. The angle gathers obtained can be used for migration velocity analysis, AVA analysis and so on. Numerical examples and real data examples demonstrate the effectiveness of this method.


2018 ◽  
Vol 26 (01) ◽  
pp. 1750033 ◽  
Author(s):  
Jiangang Xie ◽  
Mingwei Zhuang ◽  
Zichao Guo ◽  
Hai Liu ◽  
Qing Huo Liu

Reverse time migration (RTM), especially that for elastic waves, consumes massive computation resources which limit its wide applications in industry. We suggest to use the pseudospectral time-domain (PSTD) method in elastic wave RTM. RTM using PSTD can significantly reduce the computational requirements compared with RTM using the traditional finite difference time domain method (FDTD). In addition to the advantage of low sampling rate with high accuracy, the PSTD method also eliminates the periodicity (or wraparound) limitation caused by fast Fourier transform in the conventional pseudospectral method. To achieve accurate results, the PSTD method needs only about half the spatial sampling rate of the twelfth-order FDTD method. Thus, the PSTD method can save up to 87.5% storage memory and 90% computation time over the twelfth-order FDTD method. We implement RTM using PSTD for elastic wave equations and accelerate it by Open Multi-Processing technology. To keep the computational load balance in parallel computation, we design a new PML layout which merges the PML in both ends of an axis together. The efficiency and imaging quality of the proposed RTM is verified by imaging on 2D and 3D models.


Geophysics ◽  
1997 ◽  
Vol 62 (3) ◽  
pp. 906-917 ◽  
Author(s):  
Jinming Zhu ◽  
Larry R. Lines

Reverse‐time migration applies finite‐difference wave equation solutions by using unaliased time‐reversed recorded traces as seismic sources. Recorded data can be sparsely or irregularly sampled relative to a finely spaced finite‐difference mesh because of the nature of seismic acquisition. Fortunately, reliable interpolation of missing traces is implicitly included in the reverse‐time wave equation computations. This implicit interpolation is essentially based on the ability of the wavefield to “heal itself” during propagation. Both synthetic and real data examples demonstrate that reverse‐time migration can often be performed effectively without the need for explicit interpolation of missing traces.


Sign in / Sign up

Export Citation Format

Share Document