scholarly journals Full-waveform inversion, Part 1: Forward modeling

2017 ◽  
Vol 36 (12) ◽  
pp. 1033-1036 ◽  
Author(s):  
Mathias Louboutin ◽  
Philipp Witte ◽  
Michael Lange ◽  
Navjot Kukreja ◽  
Fabio Luporini ◽  
...  

Since its reintroduction by Pratt (1999) , full-waveform inversion (FWI) has gained a lot of attention in geophysical exploration because of its ability to build high-resolution velocity models more or less automatically in areas of complex geology. While there is an extensive and growing literature on the topic, publications focus mostly on technical aspects, making this topic inaccessible for a broader audience due to the lack of simple introductory resources for newcomers to computational geophysics. We will accomplish this by providing a hands-on walkthrough of FWI using Devito ( Lange et al., 2016 ), a system based on domain-specific languages that automatically generates code for time-domain finite differences.

Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. R173-R184 ◽  
Author(s):  
Angelo Sajeva ◽  
Mattia Aleardi ◽  
Eusebio Stucchi ◽  
Nicola Bienati ◽  
Alfredo Mazzotti

We have developed a stochastic full-waveform inversion that uses genetic algorithms (GA FWI) to estimate acoustic macro models of the P-wave velocity field. Stochastic methods such as GA severely suffer the curse of dimensionality, meaning that they require unaffordable computer resources for inverse problems with many unknowns and expensive forward modeling. To mitigate this issue, we have proposed a two-grid technique with a coarse grid to represent the subsurface for the GA inversion and a finer grid for the forward modeling. We have applied this procedure to invert synthetic acoustic data of the Marmousi model, and we have developed three different tests. The first two tests use a velocity model derived from standard stacking velocity analysis as prior information and differ only for the parameterization of the coarse grid. Their comparison indicates that a smart parameterization of the coarse grid may significantly improve the final result. The third test uses a linearly increasing 1D velocity model as prior information, a layer-stripping procedure, and a large number of model evaluations. All three tests return velocity models that fairly reproduce the long-wavelength structures of the Marmousi. First-break cycle skipping related to the seismograms of the final GA-FWI models is significantly reduced compared with that computed on the models used as prior information. Descent-based FWIs starting from final GA-FWI models yield velocity models with low and comparable model misfits and with an improved reconstruction of the structural details. The quality of the models obtained by GA FWI plus descent-based FWI is benchmarked against the models obtained by descent-based FWI started from a smoothed version of the Marmousi and started directly from the prior information models. Our results are promising and demonstrate the ability of the two-grid GA FWI to yield velocity models suitable as input to descent-based FWI.


Geophysics ◽  
2021 ◽  
pp. 1-85
Author(s):  
Ludovic Métivier ◽  
Romain Brossier

A receiver-extension strategy is presented as an alternative to recently promoted source-extension strategies, in the framework of high resolution seismic imaging by full waveform inversion. This receiver-extension strategy is directly applicable in time-domain full waveform inversion, and unlike source-extension methods it incurs negligible extra computational cost. After connections between difference source-extension strategies are reviewed, the receiver-extension method is introduced and analyzed for single-arrival data. The method results in a misfit function convex with respect to the velocity model in this context. The method is then applied to three exploration scale synthetic case studies representative of different geological environment, based on: the Marmousi model, the BP 2004 salt model, and the Valhall model. In all three cases the receiver-extension strategy makes it possible to start full waveform inversion with crude initial models, and reconstruct meaningful subsurface velocity models. The good performance of the method even considering inaccurate amplitude prediction due to noise, imperfect modeling, and source wavelet estimation, bodes well for field data applications.


2017 ◽  
Vol 209 (3) ◽  
pp. 1718-1734 ◽  
Author(s):  
Gabriel Fabien-Ouellet ◽  
Erwan Gloaguen ◽  
Bernard Giroux

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE101-VE117 ◽  
Author(s):  
Hafedh Ben-Hadj-Ali ◽  
Stéphane Operto ◽  
Jean Virieux

We assessed 3D frequency-domain (FD) acoustic full-waveform inversion (FWI) data as a tool to develop high-resolution velocity models from low-frequency global-offset data. The inverse problem was posed as a classic least-squares optimization problem solved with a steepest-descent method. Inversion was applied to a few discrete frequencies, allowing management of a limited subset of the 3D data volume. The forward problem was solved with a finite-difference frequency-domain method based on a massively parallel direct solver, allowing efficient multiple-shot simulations. The inversion code was fully parallelized for distributed-memory platforms, taking advantage of a domain decomposition of the modeled wavefields performed by the direct solver. After validation on simple synthetic tests, FWI was applied to two targets (channel and thrust system) of the 3D SEG/EAGE overthrust model, corresponding to 3D domains of [Formula: see text] and [Formula: see text], respectively. The maximum inverted frequencies are 15 and [Formula: see text] for the two applications. A maximum of 30 dual-core biprocessor nodes with [Formula: see text] of shared memory per node were used for the second target. The main structures were imaged successfully at a resolution scale consistent with the inverted frequencies. Our study confirms the feasibility of 3D frequency-domain FWI of global-offset data on large distributed-memory platforms to develop high-resolution velocity models. These high-velocity models may provide accurate macromodels for wave-equation prestack depth migration.


2017 ◽  
Author(s):  
Musa Maharramov ◽  
Ganglin Chen ◽  
Partha S. Routh ◽  
Anatoly I. Baumstein ◽  
Sunwoong Lee ◽  
...  

Geophysics ◽  
2015 ◽  
Vol 80 (3) ◽  
pp. F31-F39 ◽  
Author(s):  
Pengliang Yang ◽  
Jinghuai Gao ◽  
Baoli Wang

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R1-R10 ◽  
Author(s):  
Zhendong Zhang ◽  
Tariq Alkhalifah ◽  
Zedong Wu ◽  
Yike Liu ◽  
Bin He ◽  
...  

Full-waveform inversion (FWI) is an attractive technique due to its ability to build high-resolution velocity models. Conventional amplitude-matching FWI approaches remain challenging because the simplified computational physics used does not fully represent all wave phenomena in the earth. Because the earth is attenuating, a sample-by-sample fitting of the amplitude may not be feasible in practice. We have developed a normalized nonzero-lag crosscorrelataion-based elastic FWI algorithm to maximize the similarity of the calculated and observed data. We use the first-order elastic-wave equation to simulate the propagation of seismic waves in the earth. Our proposed objective function emphasizes the matching of the phases of the events in the calculated and observed data, and thus, it is more immune to inaccuracies in the initial model and the difference between the true and modeled physics. The normalization term can compensate the energy loss in the far offsets because of geometric spreading and avoid a bias in estimation toward extreme values in the observed data. We develop a polynomial-type weighting function and evaluate an approach to determine the optimal time lag. We use a synthetic elastic Marmousi model and the BigSky field data set to verify the effectiveness of the proposed method. To suppress the short-wavelength artifacts in the estimated S-wave velocity and noise in the field data, we apply a Laplacian regularization and a total variation constraint on the synthetic and field data examples, respectively.


2021 ◽  
Vol 40 (5) ◽  
pp. 324-334
Author(s):  
Rongxin Huang ◽  
Zhigang Zhang ◽  
Zedong Wu ◽  
Zhiyuan Wei ◽  
Jiawei Mei ◽  
...  

Seismic imaging using full-wavefield data that includes primary reflections, transmitted waves, and their multiples has been the holy grail for generations of geophysicists. To be able to use the full-wavefield data effectively requires a forward-modeling process to generate full-wavefield data, an inversion scheme to minimize the difference between modeled and recorded data, and, more importantly, an accurate velocity model to correctly propagate and collapse energy of different wave modes. All of these elements have been embedded in the framework of full-waveform inversion (FWI) since it was proposed three decades ago. However, for a long time, the application of FWI did not find its way into the domain of full-wavefield imaging, mostly owing to the lack of data sets with good constraints to ensure the convergence of inversion, the required compute power to handle large data sets and extend the inversion frequency to the bandwidth needed for imaging, and, most significantly, stable FWI algorithms that could work with different data types in different geologic settings. Recently, with the advancement of high-performance computing and progress in FWI algorithms at tackling issues such as cycle skipping and amplitude mismatch, FWI has found success using different data types in a variety of geologic settings, providing some of the most accurate velocity models for generating significantly improved migration images. Here, we take a step further to modify the FWI workflow to output the subsurface image or reflectivity directly, potentially eliminating the need to go through the time-consuming conventional seismic imaging process that involves preprocessing, velocity model building, and migration. Compared with a conventional migration image, the reflectivity image directly output from FWI often provides additional structural information with better illumination and higher signal-to-noise ratio naturally as a result of many iterations of least-squares fitting of the full-wavefield data.


Sign in / Sign up

Export Citation Format

Share Document