The role of geomechanical modeling in the measurement and understanding of geophysical data collected during carbon sequestration

2021 ◽  
Vol 40 (6) ◽  
pp. 413-417
Author(s):  
Chunfang Meng ◽  
Michael Fehler

As fluids are injected into a reservoir, the pore fluid pressure changes in space and time. These changes induce a mechanical response to the reservoir fractures, which in turn induces changes in stress and deformation to the surrounding rock. The changes in stress and associated deformation comprise the geomechanical response of the reservoir to the injection. This response can result in slip along faults and potentially the loss of fluid containment within a reservoir as a result of cap-rock failure. It is important to recognize that the slip along faults does not occur only due to the changes in pore pressure at the fault location; it can also be a response to poroelastic changes in stress located away from the region where pore pressure itself changes. Our goal here is to briefly describe some of the concepts of geomechanics and the coupled flow-geomechanical response of the reservoir to fluid injection. We will illustrate some of the concepts with modeling examples that help build our intuition for understanding and predicting possible responses of reservoirs to injection. It is essential to understand and apply these concepts to properly use geomechanical modeling to design geophysical acquisition geometries and to properly interpret the geophysical data acquired during fluid injection.

Author(s):  
Josimar A. Silva ◽  
Hannah Byrne ◽  
Andreas Plesch ◽  
John H. Shaw ◽  
Ruben Juanes

ABSTRACT The injection experiment conducted at the Rangely oil field, Colorado, was a pioneering study that showed qualitatively the correlation between reservoir pressure increases and earthquake occurrence. Here, we revisit this field experiment using a mechanistic approach to investigate why and how the earthquakes occurred. Using data collected from decades of field operations, we build a geological model for the Rangely oil field, perform reservoir simulation to history match pore-pressure variations during the experiment, and perform geomechanical simulations to obtain stresses at the main fault, where the earthquakes were sourced. As a viable model, we hypothesize that pressure diffusion occurred through a system of highly permeable fractures, adjacent to the main fault in the field, connecting the injection wells to the area outside of the injection interval where intense seismic activity occurred. We also find that the main fault in the field is characterized by a friction coefficient μ  ≈  0.7—a value that is in good agreement with the classical laboratory estimates conducted by Byerlee for a variety of rock types. Finally, our modeling results suggest that earthquakes outside of the injection interval were released tectonic stresses and thus should be classified as triggered, whereas earthquakes inside the injection interval were driven mostly by anthropogenic pore-pressure changes and thus should be classified as induced.


2021 ◽  
Author(s):  
Jill Peikert ◽  
Andrea Hampel ◽  
Meike Bagge

<p>The analysis of the Coulomb stress changes has become an important tool for seismic hazard evaluation because such stress changes may trigger or delay next earthquakes. Processes that can cause significant Coulomb stress changes include coseismic slip, earthquake-induced poroelastic effects as well as transient postseismic processes such as viscoelastic relaxation. In this study, we investigate the spatial and temporal evolution of pore fluid pressure changes and fluid flow during the seismic cycle, their dependency on the permeability in the crust and the interaction with postseismic viscoelastic relaxation. To achieve this, we use 2D finite-element models for intra-continental normal and thrust faults, which include coseismic slip, poroelastic effects, postseismic viscoelastic relaxation and interseismic stress accumulation. In different experiments, we vary (1) the permeability of the upper and lower crust while keeping the viscosity structure constant and (2) the viscosity of the lower crust and lithospheric mantle, while we keep the permeabilities constant. (1) The modelling results show that the highest changes in pore fluid pressure during and after the earthquake occur within a distance of ~ 1 km around the lower fault tip at the transition between upper and lower crust. The evolution of pore pressure and fluid flow depends primarily on the permeability in the upper crust. With decreasing permeability, the possibility of the pore fluids to flow decreases and thus, in the postseismic phase, the duration of the poroelastic relaxation increases, from a few days to several years, until the pore pressure reaches the initial pressure of the preseismic phase. In contrast, the influence of variations of the permeability in the lower crust on the pore pressure changes is negligible. For high upper-crustal permeabilities, postseismic vertical velocities are high and decreases rapidly with time, from around 120 mm/a after the first year by two orders of magnitude after 10 years, whereas for low permeabilities they remain consistently low over the years after the earthquake. (2) Models with low viscosity of the lower crust show that the timescales of poroelastic effects and viscoelastic relaxation overlap and affect the postseismic velocity already in the early postseismic phase and that both processes decay within a few years after the earthquake. For higher viscosities, the velocity is initially dominated by pore pressure changes during the first few years, whereas viscoelastic relaxation lasts for decades. Both processes also show differences in their spatial scale. Poroelastic effects occur within a few kilometers around the fault, whereas viscoelastic relaxation acts on tens to hundreds of kilometers. As both processes can cause Coulomb stress changes on faults in the vicinity of the earthquake source fault, it is important to understand the spatial and temporal evolution, the effects on the individual faults and the interaction of both processes during the earthquake cycle. Future work will therefore include the calculation and examination of Coulomb stress changes on intra-continental normal and thrust faults using 3D models that include poroelastic effects and viscoelastic relaxation.</p>


2021 ◽  
Author(s):  
Rebecca O. Salvage ◽  
David W. Eaton

<p>The global pandemic of COVID-19 furnished an opportunity to study seismicity in the Kiskatinaw area of British Columbia, noted for hydraulic-fracturing induced seismicity, during a period of anthropogenic quiescence. A total of 389 events were detected from April to August 2020, encompassing a period with no hydraulic-fracturing operations during a government-imposed lockdown. During this time period, observed seismicity had a maximum magnitude of M<sub>L</sub> 1.2 and lacked temporal clustering that is often characteristic of hydraulic-fracturing induced sequences. Instead, seismicity was persistent over the lockdown period, similar to swarm-like seismicity with no apparent foreshock-aftershock type sequences. Hypocenters occurred within a corridor orientated NW-SE, just as seismicity had done in previous years in the area, with focal depths near the target Montney formation or shallower (<2.5 km). Based on the Gutenberg-Richter relationship, we estimate that a maximum of 21% of the detected events during lockdown may be attributable to natural seismicity, with a further 8% possibly due to dynamic triggering of seismicity from teleseismic events. The remaining ~70% cannot be attributed to direct pore pressure increases induced by fluid injection, and therefore is inferred to represent latent seismicity i.e. seismicity that occurs after an unusually long delay following primary activation processes, with no obvious triggering mechanism. We can exclude pore-pressure diffusion from the most recent fluid injection, as is there is no clear pattern of temporal or spatial seismicity migration. If elevated pore pressure from previous injections became trapped in the subsurface, this could explain the localization of seismicity within an operational corridor, but it does not explain the latency of seismicity on a timescale of months. However, aseismic creep on weak surfaces such as faults, in response to tectonic stresses, in addition to trapped elevation pore-pressure could play a role in stress re-loading to sustain the observed pattern of seismicity.</p>


2021 ◽  
Author(s):  
Grzegorz Lizurek ◽  
Konstantinos Leptokaropoulos ◽  
Jan Wiszniowski ◽  
Izabela Nowaczyńska ◽  
Nguyen Van Giang ◽  
...  

<p>Reservoir-triggered seismicity (RTS) is the longest known anthropogenic seismicity type. It has the potential to generate seismic events of M6 and bigger. Previous studies of this phenomenon have proved that major events are triggered on preexisting major discontinuities, forced to slip by stress changes induced by water level fluctuations and/or pore-pressure changes in the rock mass in the vicinity of reservoirs. Song Tranh 2 is an artificial water reservoir located in Central Vietnam. Its main goal is back up the water for hydropower plant. High seismic activity has been observed in this area since the reservoir was first filled in 2011. The relation between water level and seismic activity in the Song Tranh area is complex, and the lack of clear correlation between water level and seismic activity has led to the conclusion that ongoing STR2 seismic activity is an example of the delayed response type of RTS. However, the first phase of the activity observed after impoundment has been deemed a rapid response type. In this work, we proved that the seismicity recorded between 2013 and 2016 manifested seasonal trends related to water level changes during wet and dry seasons. The response of activity and its delay with respect to water level changes suggest that the main triggering factor is pore pressure change due to the significant water level changes observed. A stress orientation difference between low and high water periods is also revealed. The findings indicate that water load and related pore pressure changes influence seismic activity and stress orientation in this area.</p><p>This work was partially supported by research project no. 2017/27/B/ST10/01267, funded by the National Science Centre, Poland, under agreement no. UMO-2017/27/B/ST10/01267.</p>


2018 ◽  
Vol 55 (12) ◽  
pp. 1756-1768
Author(s):  
Jahanzaib Israr ◽  
Buddhima Indraratna

This paper presents results from a series of piping tests carried out on a selected range of granular filters under static and cyclic loading conditions. The mechanical response of filters subjected to cyclic loading could be characterized in three distinct phases; namely, (I) pre-shakedown, (II) post-shakedown, and (III) post-critical (i.e., the occurrence of internal erosion). All the permanent geomechanical changes such, as erosion, permeability variations, and axial strain developments, took place during phases I and III, while the specimen response remained purely elastic during phase II. The post-critical occurrence of erosion incurred significant settlement that may not be tolerable for high-speed railway substructures. The analysis revealed that a cyclic load would induce excess pore-water pressure, which, in corroboration with steady seepage forces and agitation due to dynamic loading, could then cause internal erosion of fines from the specimens. The resulting excess pore pressure is a direct function of the axial strain due to cyclic densification, as well as the loading frequency and reduction in permeability. A model based on strain energy is proposed to quantify the excess pore-water pressure, and subsequently validated using current and existing test results from published studies.


Sign in / Sign up

Export Citation Format

Share Document