2D finite-element modelling of the interaction between poroelastic effects and viscoelastic relaxation during the seismic cycle

Author(s):  
Jill Peikert ◽  
Andrea Hampel ◽  
Meike Bagge

<p>The analysis of the Coulomb stress changes has become an important tool for seismic hazard evaluation because such stress changes may trigger or delay next earthquakes. Processes that can cause significant Coulomb stress changes include coseismic slip, earthquake-induced poroelastic effects as well as transient postseismic processes such as viscoelastic relaxation. In this study, we investigate the spatial and temporal evolution of pore fluid pressure changes and fluid flow during the seismic cycle, their dependency on the permeability in the crust and the interaction with postseismic viscoelastic relaxation. To achieve this, we use 2D finite-element models for intra-continental normal and thrust faults, which include coseismic slip, poroelastic effects, postseismic viscoelastic relaxation and interseismic stress accumulation. In different experiments, we vary (1) the permeability of the upper and lower crust while keeping the viscosity structure constant and (2) the viscosity of the lower crust and lithospheric mantle, while we keep the permeabilities constant. (1) The modelling results show that the highest changes in pore fluid pressure during and after the earthquake occur within a distance of ~ 1 km around the lower fault tip at the transition between upper and lower crust. The evolution of pore pressure and fluid flow depends primarily on the permeability in the upper crust. With decreasing permeability, the possibility of the pore fluids to flow decreases and thus, in the postseismic phase, the duration of the poroelastic relaxation increases, from a few days to several years, until the pore pressure reaches the initial pressure of the preseismic phase. In contrast, the influence of variations of the permeability in the lower crust on the pore pressure changes is negligible. For high upper-crustal permeabilities, postseismic vertical velocities are high and decreases rapidly with time, from around 120 mm/a after the first year by two orders of magnitude after 10 years, whereas for low permeabilities they remain consistently low over the years after the earthquake. (2) Models with low viscosity of the lower crust show that the timescales of poroelastic effects and viscoelastic relaxation overlap and affect the postseismic velocity already in the early postseismic phase and that both processes decay within a few years after the earthquake. For higher viscosities, the velocity is initially dominated by pore pressure changes during the first few years, whereas viscoelastic relaxation lasts for decades. Both processes also show differences in their spatial scale. Poroelastic effects occur within a few kilometers around the fault, whereas viscoelastic relaxation acts on tens to hundreds of kilometers. As both processes can cause Coulomb stress changes on faults in the vicinity of the earthquake source fault, it is important to understand the spatial and temporal evolution, the effects on the individual faults and the interaction of both processes during the earthquake cycle. Future work will therefore include the calculation and examination of Coulomb stress changes on intra-continental normal and thrust faults using 3D models that include poroelastic effects and viscoelastic relaxation.</p>

2020 ◽  
Vol 92 (1) ◽  
pp. 127-139
Author(s):  
Xin Lin ◽  
Jinlai Hao ◽  
Dun Wang ◽  
Risheng Chu ◽  
Xiangfang Zeng ◽  
...  

Abstract On 24 January 2020 (UTC), a destructive Mw 6.7 earthquake struck the east Anatolian fault of eastern Turkey after a series of foreshocks, causing many casualties and significant property damage. In this study, the rupture process of this earthquake is investigated with teleseismic broadband body-wave and surface-wave records. Results indicate that this earthquake is a left-lateral strike-slip event, and the rupture extends mainly to south. The main slip patch spreads ∼30  km along strike in the shallow above 14 km with a peak slip of ∼1.2  m, and the total seismic moment is 1.69×1019  N·m. The east–west component of horizontal surface displacement predicted with our slip model ranges from ∼0.4 to −0.3  m. The predicted displacements are consistent with the observed ones obtained from satellite images. We relocate 459 foreshocks and early aftershocks to explore the relationship between foreshock and aftershock sequences and coseismic slip. It is noted that there is an anticorrelation relationship between the distributions of early aftershocks and the coseismic slip. The strain energy in the large slip patch may have been sufficiently released by the mainshock; therefore, fewer early aftershocks occurred in that patch. Although we note a similar pattern between the relocated foreshock and coseismic slip, and a migration of foreshock, our dataset may not well resolve the correlation and migration due to the incomplete relocation foreshock catalog. Based on the slip model, we calculate the coulomb stress changes on the surrounding faults caused by the mainshock. The results reveal that the mainshock promoted stress accumulation on the northern and southern ends of the Elazig–Matalya segment and may reactivate the locked fault segment, leading to a high seismic risk in these regions. Although this earthquake does not significantly increase the coulomb stress change, the seismic risk of the Matalya–Kahraman Maras–Antakya segment should draw attention.


2001 ◽  
Vol 34 (4) ◽  
pp. 1539
Author(s):  
E. E. PAPADIMITRIOU ◽  
V. G. KARAKOSTAS ◽  
A. B. BABA

Coulomb stress changes (ACFF)were calculated assuming that earthquakes can be modelled as static dislocations in an elastic half-space, and taking into account the coseismic slip in strong earthquakes. The stress change calculations were performed for strike, dip, and rake appropriate to the strong events considered. We evaluate if these chosen earthquakes brought a given strong subsequent event closer to, or farther from, failure. It was found that each of the subsequent strong events occurred in regions of increased calculated Coulomb stress before their occurrence. Moreover, the majority of smaller aftershocks also were located in areas of positive ACFF. This indicates the probable triggering of the latter events, the foci of which are situated at nearby faults or fault segments.


2013 ◽  
Vol 13 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Y. Wen ◽  
C. Xu ◽  
Y. Liu ◽  
G. Jiang ◽  
P. He

Abstract. On 14 April 2010, an Mw = 6.9 earthquake occurred in the Yushu county of China, which caused ~3000 people to lose their lives. Integrated with the information from the observed surface ruptures and aftershock locations, the faulting pattern of this earthquake is derived from the descending wide-swath and ascending strip mode PALSAR data collected by ALOS satellite. We used a layered crustal model and stress drop smoothing constraint to infer the coseismic slip distribution. Our model suggests that the earthquake fault can be divided into four segments and the slip mainly occurs within the upper 12 km with a maximum slip of 2.0 m at depth of 3 km on the Jiegu segment. The rupture of the upper 12 km is dominated by left-lateral strike-slip motion. The relatively small slip along the SE region of Yushu segment suggests a slip deficit there. The inverted geodetic moment is approximately Mw = 6.9, consistent with the seismological results. The average stress drop caused by the earthquake is about 2 MPa with a maximum stress drop of 8.3 MPa. Furthermore, the calculated static Coulomb stress changes in surrounding regions show increased Coulomb stress occurred in the SE region along the Yushu segment but with less aftershock, indicating an increased seismic hazard in this region after the earthquake.


2020 ◽  
Vol 224 (1) ◽  
pp. 416-434
Author(s):  
Dezheng Zhao ◽  
Chunyan Qu ◽  
Xinjian Shan ◽  
Roland Bürgmann ◽  
Wenyu Gong ◽  
...  

SUMMARY We investigate the coseismic and post-seismic deformation due to the 6 February 2018 Mw 6.4 Hualien earthquake to gain improved insights into the fault geometries and complex regional tectonics in this structural transition zone. We generate coseismic deformation fields using ascending and descending Sentinel-1A/B InSAR data and GPS data. Analysis of the aftershocks and InSAR measurements reveal complex multifault rupture during this event. We compare two fault model joint inversions of SAR, GPS and teleseismic body waves data to illuminate the involved seismogenic faults, coseismic slip distributions and rupture processes. Our preferred fault model suggests that both well-known active faults, the dominantly left-lateral Milun and Lingding faults, and previously unrecognized oblique-reverse west-dipping and north-dipping detachment faults, ruptured during this event. The maximum slip of ∼1.6 m occurred on the Milun fault at a depth of ∼2–5 km. We compute post-seismic displacement time series using the persistent scatterer method. The post-seismic range-change fields reveal large surface displacements mainly in the near-field of the Milun fault. Kinematic inversions constrained by cumulative InSAR displacements along two tracks indicate that the afterslip occurred on the Milun and Lingding faults and the west-dipping fault just to the east. The maximum cumulative afterslip of 0.4–0.6 m occurred along the Milun fault within ∼7 months of the main shock. The main shock-induced static Coulomb stress changes may have played an important role in driving the afterslip adjacent to coseismic high-slip zones on the Milun, Lingding and west-dipping faults.


Author(s):  
R. Alac Barut ◽  
J. Trinder ◽  
C. Rizos

On August 17<sup>th</sup> 1999, a M<sub>w</sub> 7.4 earthquake struck the city of Izmit in the north-west of Turkey. This event was one of the most devastating earthquakes of the twentieth century. The epicentre of the Izmit earthquake was on the North Anatolian Fault (NAF) which is one of the most active right-lateral strike-slip faults on earth. However, this earthquake offers an opportunity to study how strain is accommodated in an inter-segment region of a large strike slip fault. In order to determine the Izmit earthquake post-seismic effects, the authors modelled Coulomb stress changes of the aftershocks, as well as using the deformation measurement techniques of Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS). The authors have shown that InSAR and GNSS observations over a time period of three months after the earthquake combined with Coulomb Stress Change Modelling can explain the fault zone expansion, as well as the deformation of the northern region of the NAF. It was also found that there is a strong agreement between the InSAR and GNSS results for the post-seismic phases of investigation, with differences less than 2mm, and the standard deviation of the differences is less than 1mm.


2021 ◽  
Vol 40 (6) ◽  
pp. 413-417
Author(s):  
Chunfang Meng ◽  
Michael Fehler

As fluids are injected into a reservoir, the pore fluid pressure changes in space and time. These changes induce a mechanical response to the reservoir fractures, which in turn induces changes in stress and deformation to the surrounding rock. The changes in stress and associated deformation comprise the geomechanical response of the reservoir to the injection. This response can result in slip along faults and potentially the loss of fluid containment within a reservoir as a result of cap-rock failure. It is important to recognize that the slip along faults does not occur only due to the changes in pore pressure at the fault location; it can also be a response to poroelastic changes in stress located away from the region where pore pressure itself changes. Our goal here is to briefly describe some of the concepts of geomechanics and the coupled flow-geomechanical response of the reservoir to fluid injection. We will illustrate some of the concepts with modeling examples that help build our intuition for understanding and predicting possible responses of reservoirs to injection. It is essential to understand and apply these concepts to properly use geomechanical modeling to design geophysical acquisition geometries and to properly interpret the geophysical data acquired during fluid injection.


2014 ◽  
Vol 971-973 ◽  
pp. 2172-2175
Author(s):  
Dong Ning Lei ◽  
Jian Chao Wu ◽  
Yong Jian Cai

TheCoulomb stress changes are usually adopted to make analysis on faultinteractions and stress triggering. This paper mainly deals with Coulomb stresschange of mainshock and affect on aftershocks. We preliminarily conclude thatthe mainshock produce Coulomb stress change on aftershocks most behavingpositive and triggered them. By calculating it is obvious that more aftershocksfell into stress increasing area and triggering percentage is up to ninety ofmaximum and seventy-one of minimum.


Sign in / Sign up

Export Citation Format

Share Document